VTU - EDUSAT

Three Phase Controlled Rectifiers

-

viu民
Learning

VTU - EDUSAT

Programme

3 Phase Controlled Rectifiers

- Operate from 3 phase ac supply voltage.
- They provide higher dc output voltage.
- Higher dc output power.
- Higher output voltage ripple frequency.
- Filtering requirements are simplified for smoothing out load voltage and load current.

VTU - EDUSAT

Programme

- Extensively used in high power variable speed industrial dc drives.
- Three single phase half-wave converters can be connected together to form a three phase halfwave converter.

VTU - EDUSAT Programme

3-Phase Half Wave Converter (3-Pulse Converter) with
RL Load
Continuous \& Constant Load Current Operation

Learning

VTU - EDUSAT

Programme

इसरो/iडन्त

Learning

VTU - EDUSAT

programme
 Vector Diagram of

 3 Phase Supply Voltages

$$
\begin{aligned}
& v_{R N}=v_{A N} \\
& v_{Y N}=v_{B N} \\
& v_{B N}=v_{C N}
\end{aligned}
$$

Learning

VTU - EDUSAT

 Programme3 Phase Supply Voltage Equations
We deifine three line to neutral voltages (3 phase voltages) as follows

VTU - EDUSAT

Programme

$$
\begin{aligned}
\nu_{R N}=V_{a n} & =V_{m} \sin \omega t \\
& V_{m}=\text { Max. Phase Voltage }
\end{aligned}
$$

$$
\begin{aligned}
v_{Y N}=v_{b n} & =V_{m} \sin \left(\omega t-\frac{2 \pi}{3}\right) \\
& =V_{m} \sin \left(\omega t-120^{\circ}\right)
\end{aligned}
$$

$$
v_{B N}=v_{c n}=V_{m} \sin \left(\omega t+\frac{2 \pi}{3}\right)
$$

$$
=V_{m} \sin \left(\omega t+120^{\circ}\right)
$$

$$
=V_{m} \sin \left(\omega t-240^{\circ}\right)
$$

VTU - EDUSAT

Proaramme

VTU - EDUSAT

Programme

Each thyristor conducts for $2 \pi / 3\left(120^{\circ}\right)$
Constant Load

VTU - EDUSAT Programme

To Derive an Expression for the Average Output Voltage of a 3-Phase Half Wave Converter with RL Load for Continuous Load Current

VTU = EDUSAT

Programme

T_{1} is triggered at $\omega t=\left(\frac{\pi}{6}+\alpha\right)=\left(30^{0}+\alpha\right)$
T_{2} is triggered at $\omega t=\left(\frac{5 \pi}{6}+\alpha\right)=\left(150^{\circ}+\alpha\right)$
T_{3} is triggered at $\omega t=\left(\frac{7 \pi}{6}+\alpha\right)=\left(270^{\circ}+\alpha\right)$
Each thytistor conducts for 120° or $\frac{2 \pi}{3}$ radians

VTU - EDUSAT

Programme

If the reference phase voltage is
$v_{R N}=v_{a n}=V_{m} \sin \omega t$, the average or dc output voltage for continuous load current is calculated using the equation

$$
V_{d c}=\frac{3}{2 \pi}\left[\int_{\frac{\pi}{6}+\alpha}^{\frac{5 \pi}{6}+\alpha} V_{m} \sin \omega t . d(\omega t)\right]
$$

VTU - EDUSAT

Programme

$$
\begin{aligned}
& V_{d c}=\frac{3 V_{m}}{2 \pi}\left[\int_{\frac{\pi}{6}+\alpha}^{\frac{5 \pi}{6}+\alpha} \sin \omega t \cdot d(\omega t)\right] \\
& V_{d c}=\frac{3 V_{m}}{2 \pi}\left[(-\cos \omega t) / \begin{array}{c}
\frac{5 \pi}{6}+\alpha \\
\frac{\pi}{6}+\alpha
\end{array}\right] \\
& V_{d c}=\frac{3 V_{m}}{2 \pi}\left[-\cos \left(\frac{5 \pi}{6}+\alpha\right)+\cos \left(\frac{\pi}{6}+\alpha\right)\right]
\end{aligned}
$$

VTU - EDUSAT

Programme

Note from the trigonometric relationship
$\cos (A+B)=(\cos A \cdot \cos B-\sin A \cdot \sin B)$
$V_{d c}=\frac{3 V_{m}}{2 \pi}\left[\begin{array}{r}-\cos \left(\frac{5 \pi}{6}\right) \cos (\alpha)+\sin \left(\frac{5 \pi}{6}\right) \sin (\alpha) \\ +\cos \left(\frac{\pi}{6}\right) \cdot \cos (\alpha)-\sin \left(\frac{\pi}{6}\right) \sin (\alpha)\end{array}\right]$
$V_{d c}=\frac{3 V_{m}}{2 \pi}\left[\begin{array}{c}-\cos \left(150^{\circ}\right) \cos (\alpha)+\sin \left(150^{\circ}\right) \sin (\alpha) \\ +\cos \left(30^{\circ}\right) \cdot \cos (\alpha)-\sin \left(30^{\circ}\right) \sin (\alpha)\end{array}\right]$

VTU - EDUSAT

Programme

$V_{d c}=\frac{3 V_{m}}{2 \pi}\left[\begin{array}{c}-\cos \left(180^{\circ}-30^{\circ}\right) \cos (\alpha)+\sin \left(180^{\circ}-30^{\circ}\right) \sin (\alpha) \\ +\cos \left(30^{\circ}\right) \cdot \cos (\alpha)-\sin \left(30^{\circ}\right) \sin (\alpha)\end{array}\right]$
Note: $\quad \cos \left(180^{\circ}-30^{\circ}\right)=-\cos \left(30^{\circ}\right)$

$$
\sin \left(180^{\circ}-30^{\circ}\right)=\sin \left(30^{\circ}\right)
$$

$\therefore V_{d c}=\frac{3 V_{m}}{2 \pi}\left[\begin{array}{l}+\cos \left(30^{\circ}\right) \cos (\alpha)+\sin \left(30^{\circ}\right) \sin (\alpha) \\ +\cos \left(30^{\circ}\right) \cdot \cos (\alpha)-\sin \left(30^{\circ}\right) \sin (\alpha)\end{array}\right]$

VTU - EDUSAT

Programme

$V_{d c}=\frac{3 V_{m}}{2 \pi}\left[2 \cos \left(30^{\circ}\right) \cos (\alpha)\right]$
$V_{d c}=\frac{3 V_{m}}{2 \pi}\left[2 \times \frac{\sqrt{3}}{2} \cos (\alpha)\right]$
$V_{d c}=\frac{3 V_{m}}{2 \pi}[\sqrt{3} \cos (\alpha)]=\frac{3 \sqrt{3} V_{m}}{2 \pi} \cos (\alpha)$
$V_{d c}=\frac{3 V_{L m}}{2 \pi} \cos (\alpha)$
Where $V_{L m}=\sqrt{3} V_{m}=$ Max. line to line supply voltage

The maximum average or dc output voltage is obtained at a delay angle $\alpha=0$ and is given by

$$
V_{d c(\max)}=V_{d m}=\frac{3 \sqrt{3} V_{m}}{2 \pi}
$$

Where V_{m} is the peak phase voltage.
And the normalized average output voltage is

$$
V_{d c n}=V_{n}=\frac{V_{d c}}{V_{d m}}=\cos \alpha
$$

VTU - EDUSAT

Programme

The rms value of output voltage is found by using the equation

$$
V_{O(R M S)}=\left[\frac{3}{2 \pi} \int_{\frac{\pi}{6}+\alpha}^{\frac{5 \pi}{6}+\alpha} V_{m}^{2} \sin ^{2} \omega t . d(\omega t)\right]^{\frac{1}{2}}
$$

and we obtain

$$
V_{O(R M S)}=\sqrt{3} V_{m}\left[\frac{1}{6}+\frac{\sqrt{3}}{8 \pi} \cos 2 \alpha\right]^{\frac{1}{2}}
$$

VTU - EDUSAT Programme

3 Phase Half Wave

Controlled Rectifier Output Voltage Waveforms For RL Load at
Different Trigger Angles

VTU - EDUSAT
 Programme

VTU - EDUSAT Programme

点

VTU - EDUSAT

3 Phase Half Wave Controlled Rectifier With R Load and
 RL Load with FWD

VTU - EDUSAT

本

VTU - EDUSAT Programme

3 Phase Half Wave
Controlled Rectifier Output Voltage Waveforms For R Load or RL Load with FWD at
Different Trigger Angles

VTU - EDUSAT Programme

VTU - EDUSAT Programme

To Derive An

Expression For The Average Or
Dc Output Voltage Of A
3 Phase Half Wave Converter With Resistive Load Or
RL Load With FWD

VTU - EDUSAT

Programme

T_{1} is triggered at $\omega t=\left(\frac{\pi}{6}+\alpha\right)=\left(30^{0}+\alpha\right)$
T_{1} conducts from $\left(30^{\circ}+\alpha\right)$ to 180°;

$$
v_{O}=v_{a n}=V_{m} \sin \omega t
$$

T_{2} is triggered at $\omega t=\left(\frac{5 \pi}{6}+\alpha\right)=\left(150^{\circ}+\alpha\right)$
T_{2} conducts from $\left(150^{\circ}+\alpha\right)$ to 300°;

$$
v_{O}=v_{b n}=V_{m} \sin \left(\omega t-120^{\circ}\right)
$$

VTU - EDUSAT

Programme

T_{3} is triggered at $\omega t=\left(\frac{7 \pi}{6}+\alpha\right)=\left(270^{0}+\alpha\right)$
T_{3} conducts from $\left(270^{\circ}+\alpha\right)$ to 420°;

$$
\begin{aligned}
v_{O}=v_{c n} & =V_{m} \sin \left(\omega t-240^{\circ}\right) \\
& =V_{m} \sin \left(\omega t+120^{\circ}\right)
\end{aligned}
$$

VTU - EDUSAT

Programme

$$
V_{d c}=\frac{3}{2 \pi}\left[\int_{\alpha+30^{\circ}}^{180^{\circ}} v_{O} \cdot d(\omega t)\right]
$$

$$
v_{O}=v_{a n}=V_{m} \sin \omega t ; \text { for } \omega t=\left(\alpha+30^{\circ}\right) \text { to }\left(180^{\circ}\right)
$$

$$
V_{d c}=\frac{3}{2 \pi}\left[\int_{\alpha+30^{0}}^{180^{\circ}} V_{m} \sin \omega t . d(\omega t)\right]
$$

$$
V_{d c}=\frac{3 V_{m}}{2 \pi}\left[\int_{\alpha+30^{0}}^{180^{\circ}} \sin \omega t . d(\omega t)\right]
$$

VTU - EDUSAT

Programme

$$
\begin{aligned}
& V_{d c}=\frac{3 V_{m}}{2 \pi}\left[-\cos \omega t / \begin{array}{c}
180^{\circ} \\
\alpha+30^{\circ}
\end{array}\right] \\
& V_{d c}=\frac{3 V_{m}}{2 \pi}\left[-\cos 180^{\circ}+\cos \left(\alpha+30^{\circ}\right)\right]
\end{aligned}
$$

$\because \quad \cos 180^{\circ}=-1$, we get

$$
V_{d c}=\frac{3 V_{m}}{2 \pi}\left[1+\cos \left(\alpha+30^{\circ}\right)\right]
$$

VTU - EDUSAT

Programme

Three Phase Semiconverters

- 3 Phase semiconverters are used in Industrial dc drive applications upto 120 kW power output.
- Single quadrant operation is possible.
- Power factor decreases as the delay angle increases.
- Power factor is better than that of 3 phase half wave converter.

VTU - EDUSAT Programme

3 Phase
Half Controlled Bridge Converter (Semi Converter)
with Highly Inductive Load \& Continuous Ripple free Load Current

VTU - EDUSAT

Programme

VTU - EDUSAT Programme

Wave forms of 3 Phase Semiconverter for $\alpha>60^{\circ}$

VTU - EDUSAT Programme

VTU - EDUSAT Programme

VTU - EDUSAT

Programme

3 phase semiconverter output ripple frequency of output voltage is $3 f_{S}$

The delay angle α can be varied from 0 to π
During the period

$$
\begin{aligned}
& 30^{0} \leq \omega t<210^{0} \\
& \frac{\pi}{6} \leq \omega t<\frac{7 \pi}{6}, \text { thyristor } \mathrm{T}_{1} \text { is forward biased }
\end{aligned}
$$

VTU - EDUSAT

Programme

If thyristor T_{1} is triggered at $\omega t=\left(\frac{\pi}{6}+\alpha\right)$,
$T_{1} \& D_{1}$ conduct together and the line to line voltage $v_{a c}$ appears across the load.
At $\omega t=\frac{7 \pi}{6}, v_{a c}$ becomes negative $\& \mathrm{FWD} D_{m}$ conducts.
The load current continues to flow through FWD D_{m};
T_{1} and D_{1} are turned off.

VTU - EDUSAT

Programme

If FWD D_{m} is not used the T_{1} would continue to conduct until the thyristor T_{2} is triggered at
$\omega t=\left(\frac{5 \pi}{6}+\alpha\right)$, and Free wheeling action would be accomplished through $T_{1} \& D_{2}$.

If the delay angle $\alpha \leq \frac{\pi}{3}$, each thyristor conducts
for $\frac{2 \pi}{3}$ and the FWD D_{m} does not conduct.

VTU - EDUSAT

Programme

We deifine three line neutral voltages
(3 phase voltages) as follows
$v_{R N}=v_{a n}=V_{m} \sin \omega t \quad ; \quad V_{m}=$ Max. Phase Voltage
$v_{Y N}=v_{b n}=V_{m} \sin \left(\omega t-\frac{2 \pi}{3}\right)=V_{m} \sin \left(\omega t-120^{\circ}\right)$
$v_{B N}=v_{c n}=V_{m} \sin \left(\omega t+\frac{2 \pi}{3}\right)=V_{m} \sin \left(\omega t+120^{\circ}\right)$

$$
=V_{m} \sin \left(\omega t-240^{\circ}\right)
$$

V_{m} is the peak phase voltage of a wye-connected source

VTU - EDUSAT

Programme

$$
\begin{aligned}
& v_{R B}=v_{a c}=\left(v_{a n}-v_{c n}\right)=\sqrt{3} V_{m} \sin \left(\omega t-\frac{\pi}{6}\right) \\
& v_{Y R}=v_{b a}=\left(v_{b n}-v_{a n}\right)=\sqrt{3} V_{m} \sin \left(\omega t-\frac{5 \pi}{6}\right) \\
& v_{B Y}=v_{c b}=\left(v_{c n}-v_{b n}\right)=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{2}\right) \\
& v_{R Y}=v_{a b}=\left(v_{a n}-v_{b n}\right)=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{6}\right)
\end{aligned}
$$

VTU - EDUSAT Programme

Wave forms of 3 Phase Semiconverter for $\alpha \leq 60^{\circ}$

VTU - EDUSAT Programme

$$
\mathrm{ON} \mid \stackrel{\mathrm{T}_{3}, \mathrm{D}_{3},}{\mathrm{~T}_{1}, \mathrm{D}_{3}}{ }^{\text {a }}
$$

VTU - EDUSAT

Programme

VTU - EDUSAT

VTU - EDUSAT Programme

> To derive an Expression for the Average Output Voltage of 3 Phase Semiconverter for $\alpha>\pi / 3$
and Discontinuous Output Voltage

VTU - EDUSAT

Programme

For $\alpha \geq \frac{\pi}{3}$ and discontinuous output voltage: the Average output voltage is found from

$$
\begin{aligned}
& V_{d c}=\frac{3}{2 \pi}\left[\int_{\pi / 6+\alpha}^{7 \pi / 6} v_{a c} \cdot d(\omega t)\right] \\
& V_{d c}=\frac{3}{2 \pi}\left[\int_{\pi / 6+\alpha}^{7 \pi / 6} \sqrt{3} V_{m} \sin \left(\omega t-\frac{\pi}{6}\right) d(\omega t)\right]
\end{aligned}
$$

VTU - EDUSAT

Programme

$$
\begin{aligned}
& V_{d c}=\frac{3 \sqrt{3} V_{m}}{2 \pi}(1+\cos \alpha) \\
& V_{d c}=\frac{3 V_{m L}}{2 \pi}(1+\cos \alpha)
\end{aligned}
$$

$V_{m L}=\sqrt{3} V_{m}=$ Max. value of line-to-line supply voltage
The maximum average output voltage that occurs at a delay angle of $\alpha=0$ is

$$
V_{d c(\max)}=V_{d m}=\frac{3 \sqrt{3} V_{m}}{\pi}
$$

VTU - EDUSAT

Programme

The normalized average output voltage is

$$
V_{n}=\frac{V_{d c}}{V_{d m}}=0.5(1+\cos \alpha)
$$

The rms output voltage is found from

$$
V_{O(r m s)}=\left[\frac{3}{2 \pi} \int_{\pi / 6+\alpha}^{7 \pi / 6} v_{a c}^{2} \cdot d(\omega t)\right]^{\frac{1}{2}}
$$

VTU - EDUSAT Programme

$$
\begin{aligned}
& V_{O(r m s)}=\left[\frac{3}{2 \pi} \int_{\pi / 6+\alpha}^{7 \pi / 6} 3 V_{m}^{2} \sin ^{2}\left(\omega t-\frac{\pi}{6}\right) d(\omega t)\right]^{\frac{1}{2}} \\
& V_{O(r m s)}=\sqrt{3} V_{m}\left[\frac{3}{4 \pi}\left(\pi-\alpha+\frac{\sin 2 \alpha}{2}\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

Average or DC Output Voltage of a 3-Phase Semiconverter for $\alpha \leq \pi / 3$, and Continuous Output Voltage

VTU - EDUSAT Programme

For $\alpha \leq \frac{\pi}{3}$, and continuous output voltage

$$
\begin{aligned}
& V_{d c}=\frac{3}{2 \pi}\left[\int_{\pi / 6+\alpha}^{\pi / 2} v_{a b} \cdot d(\omega t)+\int_{\pi / 2}^{5 \pi / 6+\alpha} v_{a c} \cdot d(\omega t)\right] \\
& V_{d c}=\frac{3 \sqrt{3} V_{m}}{2 \pi}(1+\cos \alpha)
\end{aligned}
$$

VTU - EDUSAT Programme

$$
V_{n}=\frac{V_{d c}}{V_{d m}}=0.5(1+\cos \alpha)
$$

RMS value of o / p voltage is calculated by using the equation

$$
\begin{aligned}
& V_{O(r m s)}=\left[\frac{3}{2 \pi} \int_{\pi / 6+\alpha}^{\pi / 2} v_{a b}^{2} \cdot d(\omega t)+\int_{\pi / 2}^{5 \pi / 6+\alpha} v_{a c}^{2} \cdot d(\omega t)\right]^{\frac{1}{2}} \\
& V_{O(r m s)}=\sqrt{3} V_{m}\left[\frac{3}{4 \pi}\left(\frac{2 \pi}{3}+\sqrt{3} \cos ^{2} \alpha\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

VTU - EDUSAT Programme

Three Phase Full Converter

- 3 Phase Fully Controlled Full Wave Bridge Converter.
- Known as a 6-pulse converter.
- Used in industrial applications up to 120 kW output power.
- Two quadrant operation is possible.

VTU - EDUSAT Programme

se Learning

VTU - EDUSAT Programme

VTU - EDUSAT Programme

VTU - EDUSAT Programme

- The thyristors are triggered at an interval of $\pi / 3$.
- The frequency of output ripple voltage is $6 f_{S}$.
- T_{1} is triggered at $\omega \mathrm{t}=(\pi / 6+\alpha), \mathrm{T}_{6}$ is already conducting when T_{1} is turned ON .
- During the interval $(\pi / 6+\alpha)$ to $(\pi / 2+\alpha)$, T_{1} and T_{6} conduct together $\&$ the output load voltage is equal to $v_{a b}=\left(v_{a n}-v_{b n}\right)$

VTU - EDUSAT Programme

- T_{2} is triggered at $\omega \mathrm{t}=(\pi / 2+\alpha), \mathrm{T}_{6}$ turns off naturally as it is reverse biased as soon as T_{2} is triggered.
- During the interval $(\pi / 2+\alpha)$ to $(5 \pi / 6+\alpha), \mathrm{T}_{1}$ and T_{2} conduct together $\&$ the output load voltage $v_{O}=v_{a c}=\left(v_{a n}-v_{c n}\right)$
- Thyristors are numbered in the order in which they are triggered.
- The thyristor triggering sequence is 12,23 , $34,45,56,61,12,23,34, \ldots \ldots \ldots$.

VTU - EDUSAT Programme

We deifine three line neutral voltages
(3 phase voltages) as follows
$v_{R N}=v_{a n}=V_{m} \sin \omega t \quad ; \quad V_{m}=$ Max. Phase Voltage
$v_{Y N}=v_{b n}=V_{m} \sin \left(\omega t-\frac{2 \pi}{3}\right)=V_{m} \sin \left(\omega t-120^{\circ}\right)$
$v_{B N}=v_{c n}=V_{m} \sin \left(\omega t+\frac{2 \pi}{3}\right)=V_{m} \sin \left(\omega t+120^{\circ}\right)$

$$
=V_{m} \sin \left(\omega t-240^{\circ}\right)
$$

V_{m} is the peak phase voltage of a wye-connected source

VTU - EDUSAT Programme

The corresponding line-to-line

 supply voltages are$$
\begin{aligned}
& v_{R Y}=v_{a b}=\left(v_{a n}-v_{b n}\right)=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{6}\right) \\
& v_{Y B}=v_{b c}=\left(v_{b n}-v_{c n}\right)=\sqrt{3} V_{m} \sin \left(\omega t-\frac{\pi}{2}\right) \\
& v_{B R}=v_{c a}=\left(v_{c n}-v_{a n}\right)=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

VTU - EDUSAT Programme

To Derive An Expression For The Average Output Voltage Of 3-phase Full Converter
With Highly Inductive Load Assuming Continuous And Constant Load Current

VTU - EDUSAT Programme

The output load voltage consists of 6 voltage pulses over a period of 2π radians, Hence the average output voltage is calculated as

$$
V_{O(d c)}=V_{d c}=\frac{6}{2 \pi} \int_{\frac{\pi}{6}+\alpha}^{\frac{\pi}{2}+\alpha} v_{O} . d \omega t
$$

$$
v_{O}=v_{a b}=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{6}\right)
$$

VTU - EDUSAT Programme

$$
\begin{array}{r}
V_{d c}=\frac{3}{\pi} \int_{\frac{\pi}{6}+\alpha}^{\frac{\pi}{2}+\alpha} \sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{6}\right) \cdot d \omega t \\
\quad V_{d c}=\frac{3 \sqrt{3} V_{m}}{\pi} \cos \alpha=\frac{3 V_{m L}}{\pi} \cos \alpha
\end{array}
$$

Where $\mathrm{V}_{\mathrm{mL}}=\sqrt{3} V_{m}=$ Max. line-to-line supply voltage The maximum average dc output voltage is obtained for a delay angle $\alpha=0$,

$$
V_{d c(\max)}=V_{d m}=\frac{3 \sqrt{3} V_{m}}{\pi}=\frac{3 V_{m L}}{\pi}
$$

VTU - EDUSAT Programme

The normalized average dc output voltage is

$$
V_{d c n}=V_{n}=\frac{V_{d c}}{V_{d m}}=\cos \alpha
$$

The rms value of the output voltage is found from

$$
V_{O(r m s)}=\left[\frac{6}{2 \pi} \int_{\frac{\pi}{6}+\alpha}^{\frac{\pi}{2}+\alpha} v_{O}^{2} \cdot d(\omega t)\right]^{\frac{1}{2}}
$$

VTU - EDUSAT Programme

$$
\begin{aligned}
& V_{O(r m s)}=\left[\frac{6}{2 \pi} \int_{\frac{\pi}{6}+\alpha}^{\frac{\pi}{2}+\alpha} v_{a b}^{2} \cdot d(\omega t)\right]^{\frac{1}{2}} \\
& V_{O(r m s)}=\left[\frac{3}{2 \pi} \int_{\frac{\pi}{6}+\alpha}^{\frac{\pi}{2}+\alpha} 3 V_{m}^{2} \sin ^{2}\left(\omega t+\frac{\pi}{6}\right) \cdot d(\omega t)\right]^{\frac{1}{2}} \\
& V_{O(r m s)}=\sqrt{3} V_{m}\left(\frac{1}{2}+\frac{3 \sqrt{3}}{4 \pi} \cos 2 \alpha\right)^{\frac{1}{2}}
\end{aligned}
$$

VTU - EDUSAT Programme

Three Phase Dual Converters

- For four quadrant operation in many industrial variable speed dc drives , 3 phase dual converters are used.
- Used for applications up to 2 mega watt output power level.
- Dual converter consists of two 3 phase full converters which are connected in parallel \& in opposite directions across a common load.

VTU - EDUSAT Programme

इसरे 15

VTU - EDUSAT Programme

इसरे| 15 -

VTU - EDUSAT Programme

Outputs of Converters 1 \& 2

- During the interval $\left(\pi / 6+\alpha_{1}\right)$ to $\left(\pi / 2+\alpha_{1}\right)$, the line to line voltage $v_{a b}$ appears across the output of converter 1 and $v_{b c}$ appears across the output of converter 2

VTU - EDUSAT Programme

We deifine three line neutral voltages
(3 phase voltages) as follows
$v_{R N}=v_{a n}=V_{m} \sin \omega t$;

$$
\begin{gathered}
V_{m}=\text { Max. Phase Voltage } \\
v_{Y N}=v_{b n}=V_{m} \sin \left(\omega t-\frac{2 \pi}{3}\right)=V_{m} \sin \left(\omega t-120^{\circ}\right) \\
v_{B N}=v_{c n}=V_{m} \sin \left(\omega t+\frac{2 \pi}{3}\right)=V_{m} \sin \left(\omega t+120^{\circ}\right) \\
=V_{m} \sin \left(\omega t-240^{\circ}\right)
\end{gathered}
$$

The corresponding line-to-line

 supply voltages are$$
\begin{aligned}
& v_{R Y}=v_{a b}=\left(v_{a n}-v_{b n}\right)=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{6}\right) \\
& v_{Y B}=v_{b c}=\left(v_{b n}-v_{c n}\right)=\sqrt{3} V_{m} \sin \left(\omega t-\frac{\pi}{2}\right) \\
& v_{B R}=v_{c a}=\left(v_{c n}-v_{a n}\right)=\sqrt{3} V_{m} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

VTU - EDUSAT Programme

To obtain an Expression for the Circulating Current

- If $v_{O I}$ and $v_{O 2}$ are the output voltages of converters 1 and 2 respectively, the instantaneous voltage across the current limiting inductor during the interval $\left(\pi / 6+\alpha_{1}\right) \leq \omega \mathrm{t} \leq\left(\pi / 2+\alpha_{1}\right)$ is given by

VTU - EDUSAT Programme

$$
v_{r}=v_{O 1}+v_{O 2}=v_{a b}-v_{b c}
$$

$v_{r}=\sqrt{3} V_{m}\left[\sin \left(\omega t+\frac{\pi}{6}\right)-\sin \left(\omega t-\frac{\pi}{2}\right)\right]$
$v_{r}=3 V_{m} \cos \left(\omega t-\frac{\pi}{6}\right)$
The circulating current can be calculated by
using the equation

VTU - EDUSAT Programme

$$
\begin{aligned}
& i_{r}(t)=\frac{1}{\omega L_{r}} \int_{\frac{\pi}{6}+\alpha_{1}}^{\omega t} v_{r} \cdot d(\omega t) \\
& i_{r}(t)=\frac{1}{\omega L_{r}} \int_{\frac{\pi}{6}+\alpha_{1}}^{\omega t} 3 V_{m} \cos \left(\omega t-\frac{\pi}{6}\right) \cdot d(\omega t) \\
& i_{r}(t)=\frac{3 V_{m}}{\omega L_{r}}\left[\sin \left(\omega t-\frac{\pi}{6}\right)-\sin \alpha_{1}\right] \\
& i_{r(\max)}=\frac{3 V_{m}}{\omega L_{r}}
\end{aligned}
$$

VTU - EDUSAT Programme

Four Quadrant Operation

Conv. 2
Inverting

Conv. 1 $\alpha_{2}>90^{\circ}$

Conv. 2
Rectifying
$\alpha_{2}<90^{\circ}$

Rectifying
$\alpha_{1}<90^{\circ}$

Conv. 1
Inverting
$\alpha_{1}>90^{\circ}$

VTU - EDUSAT Programme

- There are two different modes of operation.
- Circulating current free (non circulating) mode of operation
- Circulating current mode of operation

Non Circulating

- In this mode of operation only one converter is switched on at a time
- When the converter 1 is switched on, For $\alpha_{1}<90^{\circ}$ the converter 1 operates in the Rectification mode
V_{dc} is positive, I_{dc} is positive and hence the average load power P_{dc} is positive.
- Power flows from ac source to the load

VTU - EDUSAT Programme

- When the converter 1 is on, For $\alpha_{1}>90^{\circ}$ the converter 1 operates in the Inversion mode
$V_{d c}$ is negative, $I_{d c}$ is positive and the average load power P_{dc} is negative.
- Power flows from load circuit to ac source.

VTU - EDUSAT Programme

- When the converter 2 is switched on, For $\alpha_{2}<90^{\circ}$ the converter 2 operates in the Rectification mode
V_{dc} is negative, I_{dc} is negative and the average load power P_{dc} is positive.
- The output load voltage \& load current reverse when converter 2 is on.
- Power flows from ac source to the load
\square

VTU - EDUSAT Programme

- When the converter 2 is switched on, For $\alpha_{2}>90^{\circ}$ the converter 2 operates in the Inversion mode
V_{dc} is positive, I_{dc} is negative and the average load power P_{dc} is negative.
- Power flows from load to the ac source.
- Energy is supplied from the load circuit to the ac supply.
\square

Circulating Current

Mode Of Operation

- Both the converters are switched on at the same time.
- One converter operates in the rectification mode while the other operates in the inversion mode.
- Trigger angles $\alpha_{1} \& \alpha_{2}$ are adjusted such that $\left(\alpha_{1}+\alpha_{2}\right)=180^{0}$
\square

VTU - EDUSAT Programme

- When $\alpha_{1}<90^{\circ}$, converter 1 operates as a controlled rectifier. α_{2} is made greater than 90° and converter 2 operates as an Inverter.
- V_{dc} is positive \& I_{dc} is positive and P_{dc} is positive.

VTU - EDUSAT Programme

- When $\alpha_{2}<90^{\circ}$, converter 2 operates as a controlled rectifier. α_{1} is made greater than 90° and converter 1 operates as an Inverter.
- V_{dc} is negative \& I_{dc} is negative and P_{dc} is positive.

