

(Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE-641 032

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Semester III Academic Year: 2015-2016 Regulations 2014

COURSE PLAN

Vision

To provide students with sound knowledge of Electrical and Electronics Engineering, that they become capable of facing the current and impending challenges to extend their expertise in the global arena.

Mission

Mission of our department is to

- Impart high quality education and training to the students in the field of Electrical and Electronics Engineering
- Transforming our students into enterprising technologists by giving them excellent facilities by qualified, committed members of faculty
- Motivating them to contribute immensely for the benefit of the entire humanity

Programme Educational Objectives (PEOs)

- PEO1: Graduates will be able to synthesize mathematics, science, engineering fundamentals, laboratory and work-based experiences to formulate and solve problems in Electrical and Electronics engineering and the related domains and will develop proficiency in Computer-based engineering and the use of computational tools.
- PEO2: Graduates will be prepared to communicate and work team-based on the multidisciplinary engineering projects in the allied fields of Electrical Science and will practice the ethics of their profession.
- PEO3: Graduates will realize the importance of self learning and engage in lifelong learning to become experts either as an entrepreneur or an employee so as to broaden their knowledge in the domain.

Programme Outcomes (POs)

At the end of the programme the students will have

- a. Ability to apply knowledge of mathematics, science and engineering Principles to solve the problems in electrical and electronics engineering.
- b. Ability to understand the design and conduct experiments, as well as to analyze and interpret data in electrical engineering.
- c. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- d. Ability to design a system, component or process to meet the desired goals of electrical considering social environmental ethical and social aspects.
- e. Ability to function on multidisciplinary teams.

- f. Ability to identify, formulate and solve engineering problems in the field of electrical sciences.
- g. Understanding of professional and ethical responsibility.
- h. Ability to communicate effectively.
- i. Ability to understand the impact of electrical science and engineering solutions.
- j. Ability to realize the importance and understand the need for lifelong learning to become experts in the relevant field.
- k. Knowledge of contemporary issues.
- I. Ability to manage the projects in the relevant areas of electrical sciences and enhance research through engineering and management principles.

Mapping of POs to PEOs

POs

PEOs

- a) Ability to apply knowledge of mathematics, science and engineering Principles to solve the problems in electrical and electronics engineering.
- b) Ability to understand the design and conduct experiments, as well as to analyze and interpret data in electrical engineering.
- c) Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- d) Ability to design a system, component or process to meet the desired goals of electrical considering social environmental ethical and social aspects.
- e) Ability to function on multidisciplinary teams.
- f) ability to identify, formulate and solve engineering problems in the field of electrical sciences
- g) Understanding of professional and ethical responsibility.
- h) Ability to communicate effectively.
- i) Ability to understand the impact of electrical science and engineering solutions.
- j) Ability to realize the importance and understand the need for lifelong learning to become experts in the relevant field
- k) Knowledge of contemporary issues.
- Ability to manage the projects in the relevant areas of electrical sciences and enhance research through engineering and management principles.

3			~		~						~	
2		~		~		~		~	~	~		~
1	•			•			~			~		

Evaluation Components:

	Internal (40 Marks)		External (60 Marks)
SI.NO	Components	Max. Marks	End Semester
1	CIA I,II,III(Best of Two will be considered)	30	conducted for a duration of 3 Hours for
2	Assignment / Tutorial / Innovative Work	10	100 Marks and this will be converted for 60 Marks
		40	60
	Total		100 Marks

List of Subjects

SI.NO.	Course Code	Course Title
Theory		
1	14E301	Transforms and Complex Analysis
2	14E302	Data Structures
3	14E303	Electronic Circuits
4	14E304	Electromagnetic Theory
5	14E305	DC Machines and transformer
6	14E306	Digital Electronics
Practical		
1	14E311	Data Structures Laboratory
2	14E312	Electronic Devices and Circuits Laboratory
3	14E313	DC Machines and Transformers Laboratory

COURSE PLAN OF <u>ELECTRO MAGNETIC THEORY</u> (Core)

- 1. Class : III Semester BE(EEE)
- 2. Course Code & Name : 14E304 Electro Magnetic Theory
- 3. Course Type : (Theory)

4. Course Status & Credits: UG Credits: 3

- 5. Aim/Course Description: To study and understand the concepts of electro-Magneto statics, electrical potential, energy density and their applications.
- 6. Prerequisites : Fundamental of Electrical Engineering
- 7. Course Objectives:
 - a) To understand the vectors, co-ordinate systems and static charges.
 - b) To impart knowledge on the concepts of electrostatics, energy density and their applications.
 - c) To get an exposure on conductors, dielectrics and capacitors.
 - d) To understand the concepts of magneto statics and magnetic flux density.
 - e) To know the concepts of electromagnetic waves and poynting vector
- 8. Course Outcomes:

Learners should be able to,

- a) recognize the vectors, co-ordinate systems and static charges
- b) posses knowledge about the concepts of electrostatics energy density and their applications.
- c) acquire knowledge about the conductors, dielectrics and capacitance.
- d) get an exposure to the concepts of magneto statics and magnetic flux density.
- e) have a good knowledge about electromagnetic waves and Poynting vector

Relationship of course to program outcomes

a)	Ability to apply knowledge of mathematics, science and engineering Principles to solve the problems in electrical and electronics engineering.	~
b)	Ability to understand the design and conduct experiments, as well as to analyze and interpret data in electrical engineering.	
c)	Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	
d)	Ability to design a system, component or process to meet the desired goals of electrical considering social environmental ethical and social aspects.	
e)	Ability to function on multidisciplinary teams.	
f)	ability to identify, formulate and solve engineering problems in the field of electrical sciences	~
g)	Understanding of professional and ethical responsibility.	
h)	Ability to communicate effectively.	
i)	Ability to understand the impact of electrical science and engineering solutions.	~
j)	Ability to realize the importance and understand the need for lifelong learning to become experts in the relevant field	~
k)	Knowledge of contemporary issues.	
I)	Ability to manage the projects in the relevant areas of electrical sciences and enhance research through engineering and management principles.	~

Lesson Plan:

	UNIT-1: VECTO	R ANALYSIS				
Hours	Topics	References	M	ode of	Delive	ery
		Text/	Chalk	OHP	LCD	Video
		Reference	&			Lecture
		Books	Talk			
1	Scalars	T1,R1	~			
	Vectors					
	 Vector algebra 					
2	 Vector components 	T1,R1	~			
	 Unit vectors 					
3	 Vector field 	T1,R1	~			
	 Scalar field 					
4	Tutorial 1	T1, T2, R1	~			
5	Dot product	T1,R1	~			
	 Cross product 					
6	Coordinate systems	T1,R1	~			
	 Cartesian 					
	 Cylindrical 					
	 Spherical 					
7	Relationship between the Systems	T1,R1	~			
	 Transformation of Vector 					
	 Cartesian to Cylindrical 					
	 Cylindrical to Cartesian 					
	 Cartesian to Spherical 					
8	Tutorial 2	T1, T2, R1	~			
9	Coulomb's Law	T1,R1	~			~
	 Statement 					
	 Proof 					
10	 Electric field Intensity (E) 	T1,R1	~			~
	 Field of point charge 					
	 Field of Line charge 					
11	 Field of surface charge. 	T1,R1	~			
	 Field due to continuous volume 					
	charge distribution					
12	Tutorial 3	T2, R3	~			

UNIT-2: ELECTROSTATICS

Hours	Topics	References	M	ode of	Delive	ery
		Text/	Chalk	OHP	LCD	Video
		Reference	&			Lecture
		Books	Talk			
1	 Electric flux 	T1,R1	~			~
	 Electric flux density 					
	 Vector operator 					
2	 Divergence 	T1,R1	~			
	 Maxwell's first equation 					
3	 Divergence theorem 	T1,R1	~			
	 Statement 					
	 Proof 					
4	Tutorial 1	T1, T2, R1	~			

5	 Gauss's Law 	T1,R1	~	v
	 Statement 			
	 Proof 			
6	 Application of Gauss's Law 	T1,R1	~	
7	Energy expended by moving	T1,R1	~	
	point charge			
	 Line integral 			
8	Tutorial 2	T2, R3	~	
9	 Potential difference 	T1,R1	~	
	 Potential 			
	 Potential field of point charge 			
	 Conservative Property 			
10	 Potential gradient 	T1,R1	~	
	 Electric dipole & Dipole Moment 			
11	 Energy Density in electrostatic 	T1,R1	~	
	field			
12	Tutorial 3	T1, T2, R1	~	

UNIT-3: CONDUCTORS, DIELECTRICS AND CAPACITORS

Hours	Topics	References	Mode of Delivery			ery
		Text/	Chalk	OHP	LCD	Video
		Reference	&			Lecture
		Books	Talk			
1	 Current 	T1,R1				
	 Current density 		~			
	 Continuity of current 					
2	 Conductors 	T1,R1				
	 Point Form of Ohm's Law 					
	 Resistance of a Conductor 		V			
	 Properties 					
3	 Dielectric Materials 	T1,R1				
	 Polarization 		~			
	 Properties 					
4	Tutorial 1	T1, T2, R1	~			
5,6	 Boundary Conditions at the 	T1,R1				
	interface of					
	 conductor and dielectric 		v			
	 two Dielectrics medium 					
7	 Capacitance 	T1,R1				~
	 Capacitance for different charge 					
	distribution					
	 Parallel plate capacitor with 		~			
	two dielectric media					
	 Parallel plate capacitor with 					
	three dielectric media					
8	Tutorial 2	T1, T2, R1	~			
9	Capacitance for different charge	T1,R1	~			
	distribution					
	 Parallel infinite wires 					
	 Circular conductors 					

10	 Energy stored in Capacitor 	T1,R1	~		
11	 Poisson's and Laplace Equations Statement Proof Uniqueness Theorem 	T1,R1	~		7
12	Tutorial 3	T2, R3	~		

UNIT-4: MAGNETO STATICS

Hours	Topics	References	М	ode of	Delive	ery
		Text/	Chalk	OHP	LCD	Video
		Reference	&			Lecture
		Books	Talk			
1	 Biot-Savart's Law 	T1,R1				
	 Statement 		~			
	 Proof 					
2	Ampere's circuital Law	T1.R1				~
	 Statement 	,	~			·
	 Proof 					
3	Curl	T1,R1				
	Stokes's Theorem	,	~			
	 Statement 					
	 Proof 					
4	Tutorial 1	T2, R3	~			
5	 Magnetic flux 	T1,R1				~
	 Magnetic flux density 		~			
	 Scalar and Vector magnetic 					
	potential					
6	 Magnetic Field due to 	T1,R1				
	 Straight conductor 		~			
	 Circular loop 		·			
	 Infinite sheet of current 					
7	Forces and Torque on a closed	T1,R1	~			
	circuit					
8	Tutorial 2	T2, R3	~			
0	Boundary Conditions at the	T1 D1				
9	- Boundary Conditions at the	11,61	~			
	modium					
10	Magnetic circuit	T1 R1				
10	 Self Inductance 	11,111				
	 Mutual inductance 					
	 Inductance 		~			
	 Inductance of a solenoid 					
	 Inductance of a Toroid 					
	 Inductance of a Co-axial cable 					
11	Energy stored in Magnetic field	T1,R1	~			
12	Tutorial 3	T2, R3	~			

UNIT-5: ELECTRO MAGNETIC WAVES

Hours	Topics	References	M	ode of	Delive	ery
		Text/	Chalk	OHP	LCD	Video
		Reference	&			Lecture
		Books	Talk			
1	Faraday's Law of Electromagnetic	T2, R3	~			
	Induction					
	 Statement 					
	 Proof 					
	 Displacement current 					
2	 Maxwell's equation in point form and integral form 	T2, R3	~			
3	Comparison of electric and	12, R3	~			
	magnetic circuits					
4	Tutorial 1	T1, R1				
5,6	Introduction-Wave equations	T2, R3				~
	 Wave Parameters 					
	 Wave Equations in free space 					
	 Electromagnetic wave in 					
	Perfect Dielectric					
	 Electromagnetic wave in 		•			
	Lossy Dielectric					
	 Electromagnetic Wave in 					
	Good conductor					
7	Dounting vestor					
/	Poynting vector Average Dever Density	12, 83				V
	 Average Power Density Integral and Deint form 		V			
0	- Integral and Point Ionin	T1 D1				
0 0	- Standing wave setia	11, K1	~			
9	Standing wave ratio	12, R3				
	 Wave polarization Other affect 		~			
10		TO 50				
10	 Reflection of uniform plane 	12, K3				
	waves					
	- normai incidence					
	- oblique angle incldence					
11	Effects of EMI and EMC	T2, R3	~			
	T	74 54				
12	Lutorial 3	11, R1	~			

9. Topics Beyond Syllabus:

• Case study on Wave/Signal Propagation.

10. Assignment Topics :

1.

- a) Divergence Theorem & its Proof.
 - b) Gauss's Law, its Proof and applications of Gauss's Law.
 - c) Coordinate systems.

- 2. a). Boundary Conditions
 - (i) At the interface of conductor and dielectric
 - (ii) At the interface of two Dielectrics
 - b) Curl, Stokes's Theorem and its Proof.
 - c) Poisson's and Laplace Equations and Solution to Laplace eqn

11. Text Book :

SI.NO	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	William H Hayt	Engineering	Tata McGraw Hill	2011
1.	John A Buck	Electromagnetics		2011
2	Mathew N C	Elements of	Oxford University	2010
Ζ.	Sadiku	Electromagnetics	Press, Third edition	2010

12. Reference Books:

SI.NO	Author(s)	Title of the Book	Publisher	Year of Publication
1.	John D Kraus	Electromagnetics	McGraw Hill book Co, Fifth Edition	2010
2.	Joseph A Edminister	Electromagnetics	Tata McGraw Hill	2010
3.	Seth S P	Elements of Electromagnetic Field	Dhanpatrai and co.	2007
4.	Ashutosh Pramanik	Electromagnetism – Theory and Applications	Prentice-Hall of India Private Limited, New Delhi	2006

12. Additional Resources for course:

WEB URLs:

- 1. http://www.mso.anu.edu.au/~geoff/HEA/EM_Theory.pdf
- 2. http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node42.html
- 3. http://www.farside.ph.utexas.edu/teaching/em/lectures/node59.html
- 4. http://freevideolectures.com/course/2340/electromagnetic-fields
- 5. https://www.nasa.gov/centers/johnson/pdf/639521main_emi-mc_user_test planning_guide.pdf

13. Professional Components:

Engineering Topic	: 65%
General Education	: 15%
Mathematics	: 20%

Faculty In-Charge