

Degree / Branch : B.E/EEE

Semester / Year: III / II

Subject Code & Title: 14E304 – ELECTROMAGNETIC THEORY

UNIT 1 VECTOR ANALYSIS

Part-B

 (b) Find the angle between the vectors A =2ax+4ay-az and B=3ax +6ay-4a Product and Cross Product. (c) Write short notes on Dot product. 2. (a) Explain the differential elements in cylindrical coordinate system. (b) Given the two points A (x=2, y=3, z=-1) and B (r=4, θ=25⁰, φ=125⁰). Spherical Coordinates of A, Cartesian coordinates of B and distance A (c) Write short notes on cross product. 3. (a) Explain the differential elements in Spherical coordinate system. (b) Let E = xy ax +x² ay, Find Electric flux density and Volume charge I (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrrotatic 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (c) 0, (-1,0,0), (0,1,0) and (0,-1,0) m respectively. Determining 	az using Dot (4) (4) (4) (6) (6) Find the (6) (4) (6) (4) (4)
 Product and Cross Product. (c) Write short notes on Dot product. 2. (a) Explain the differential elements in cylindrical coordinate system. (b) Given the two points A (x=2, y=3, z=-1) and B (r=4, θ=25⁰, φ=125⁰). Spherical Coordinates of A, Cartesian coordinates of B and distance A (c) Write short notes on cross product. 3. (a) Explain the differential elements in Spherical coordinate system. (b) Let E = xy a_x +x² a_y, Find Electric flux density and Volume charge E (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrotatic 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (c) 0, (-1,0,0), (0,1,0), and (0,-1,0), m respectively. Determining 	(4) (4) (6) Find the AB. (6) (4)
 (c) Write short notes on Dot product. 2. (a) Explain the differential elements in cylindrical coordinate system. (b) Given the two points A (x=2, y=3, z=-1) and B (r=4, θ=25⁰, φ=125⁰). Spherical Coordinates of A, Cartesian coordinates of B and distance A (c) Write short notes on cross product. 3. (a) Explain the differential elements in Spherical coordinate system. (b) Let E = xy a_x +x² a_y, Find Electric flux density and Volume charge E (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrotation. 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0) (-100) (010) and (0-10) m respectively. Determine 	(4) (6) Find the AB. (6) (4)
 (a) Explain the differential elements in cylindrical coordinate system. (b) Given the two points A (x=2, y=3, z=-1) and B (r=4, θ=25⁰, φ=125⁰). Spherical Coordinates of A, Cartesian coordinates of B and distance A (c) Write short notes on cross product. (a) Explain the differential elements in Spherical coordinate system. (b) Let E = xy a_x +x² a_y, Find Electric flux density and Volume charge I (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrotation. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1 0 0) (-100) (0 10) and (0 10) m respectively. Determine 	(6) Find the AB. (6) (4)
 Spherical Coordinates of A, Cartesian coordinates of B and distance A (c) Write short notes on cross product. 3. (a) Explain the differential elements in Spherical coordinate system. (b) Let E = xy a_x +x² a_y, Find Electric flux density and Volume charge E (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrotatic 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 1, 0), and (0, -10), m respectively. Determining 	AB. (6) (4)
 3. (a) Explain the differential elements in Spherical coordinate system. (b) Let E = xy a_x +x² a_y, Find Electric flux density and Volume charge I (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrrotation. 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 1, 0), and (0, -10), m respectively. Determine 	
 (b) Let E = xy a_x +x² a_y, Find Electric flux density and Volume charge I (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrrotatic 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 10), and (0, -10), m respectively. Determining 	(6)
 (c) Show that the vector E= (3x²+2y²+1) a^x - (4xy- 3y²z-3) a^y is irrrotatic 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distribut (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 1, 0), and (0, -10), m respectively. Determining 	Density (6)
 4. (a) Derive an expression of electric field intensity for line charge distribut (b) Derive an expression of electric field intensity for surface charge distric. (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 10), and (0, -10), m respectively. Determining 	onal (4)
 (b) Derive an expression of electric field intensity for surface charge distric. (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 10), and (0, -10), m respectively. Determining 	tion (6)
 (c) State dot product properties. 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10µC are placed in free space (1, 0, 0), (-10, 0), (0, 10), and (0, -10), m respectively. Determining 	ributions (6)
 5. (a) State and Explain Coulomb's Law (b) Derive Coulomb's Law in vector form (c) Four point charges each of 10μC are placed in free space (1, 0, 0), (-10, 0), (0, 10), and (0, -10), m respectively. Determining 	(4)
(b) Derive Coulomb's Law in vector form (c) Four point charges each of 10μ C are placed in free space (1, 0, 0) $(-1, 0, 0)$ $(0, 1, 0)$ and $(0, -1, 0)$ m respectively. Determine	(6)
(c) Four point charges each of 10μ C are placed in free space (1, 0, 0), (-1, 0, 0), (0, 1, 0), and (0, -1, 0), m respectively. Determine	(4)
(() () () (- () () () () () and (- () m respectively Determin	at the points
(1, 0, 0), (-1,0,0), (0,1,0) and $(0,-1,0)$ in respectively. Determine a point charge of 20µC located at a point $(0, 0, 1)$ m	e the force on
a point charge of some located at a point $(0, 0, 1)$ in.	(0)
6. (a) Define and Explain Electric field intensity E	(4)
(b) Derive an expression of electric field intensity for volume charge dist	ribution (6)
(c) Find the electric field intensity produced by a point charge distribution and have four identical 2nC maint charges logated	ition at $P(1,1,1)$
caused by four identical SNC point charges located $P_{0}(1,1,0)$ $P_{0}(1,1,0)$ and $P_{1}(1,1,0)$	at $P_1(1,1,0)$, (6)
$1_2(-1,1,0), 1_3(-1,1,0)$ and $1_4(1,-1,0).$	(0)
 (a) Briefly Explain Electric field intensity (b) Derive an expression of electric field intensity for point charge distribution 	(4)
(c) Find the electric field intensity produced by a point charge distribu-	$\begin{array}{llllllllllllllllllllllllllllllllllll$
caused by four identical 6nC point charges located	at $P_1(1,1,0)$
$P_2(-1,1,0), P_3(-1,1,0) \text{ and } P_4(1,-1,0).$	(6)

8.	(a)	Derive an expression for electric field intensity \vec{E} due to an uniformly charged infinitely long straight line with constant charge density in C/m	(6)
	(b)	Explain about Cylindrical Coordinate system	(4)
	(c)	Find the angle between the vectors $A = 2a_x + 4a_y - a_z$ and $B = 3a_x + 6a_y - 4a_z$ using Dot	t
		Product and Cross Product.	(4)
9.	(a) (b)	State and Explain Coulomb's Law Four point charges each of 10μ C are placed in free space at the various points (1, (-1, 0, 0), (0, 1, 0) and (0, -1, 0) m respectively. Determine the force on a point charge of 30μ C located at a point (0,0,1) m.	(8) 0,0), (4)
	(c)	Write short notes on Dot product and Cross product.	(4)
10.	. (a)	Obtain the expression for electric field intensity due to infinite line charge had density $\rho_L C/m$, placed along z-axis, at a point P on y axis at a distance of r from	ving n the

z axis. (6) (b) Given $A^{2} = 5a_{x}$ and $B^{22} = 4a_{x} + ta_{y}$. Find t such that the angle between A^{2} and B^{2} is (4)

(c) State Scalar product properties.

Dr. M. Kaliamoorthy, Dr. M. Jayaprakash, Prof. K. Ravi Staff In-Charge

Dr. V. Chandrasekaran HoD – EEE (4)

Degree / Branch : B.E/EEE

Semester / Year: III / II

Subject Code & Title: 14E304 – ELECTROMAGNETIC THEORY

UNIT II ELECTROSTATICS

Part-B

1.	(a)	Explain the Electric flux (Ψ) and Electric flux density (D)	(4)
	(b)	Drive expression for electric flux density due to a point charge	(6)
	(c)	Write short notes on vector Operator.	(4)
2.	(a)	How is the unit vectors defined in three co ordinate systems?	(4)
	(b)	Drive expression for electric flux density due to a line charge	(6)
	(c)	Given $\vec{A} = 2xy \ \vec{a} x + z \ \vec{a} y + yz^2 \ \vec{a} z \ \text{find} \ \nabla$. $\vec{A} \text{ at P}(2,-1, 3)$.	(6)
3.	(a)	State and prove Divergence Theorem	(8)
	(b)	Given $A=2xya_x+Za_y+yz^2a_z$.Find ∇ . A at P (2,-1, 3).	(4)
	(c)	Establish relationship between electric flux density and electric field intensity.	(4)
4.	(a) (b) (c)	Derive the potential due to a point charge at the origin State and prove Gauss's Law with the help of a spherical system A dipole having moment $P = 3\overrightarrow{a_x} - 5\overrightarrow{a_y} + 10\overrightarrow{a_z}$ nCm is located at Q (1,-2, 4 free space. Find V at P (2, 3, 4).	(4) (8) () in (4)
5.	(a)	State divergence theorem.	(4)
	(b)	Define divergence in various coordinate systems with the help of DEL.	(7)
	(c)	Give the properties of divergence.	(5)
6.	(a) (b) (c)	What do you mean by symmetrical charge distribution? Derive D due to a point charge and give the expression for D for various ch distribution. Derive Energy density in an electrostatic field with D and E	(4) narge (7) (5)
7.	(a) (b) (c)	What do you mean by Gaussian surface? Derive the Mathematical representation of Gauss's law for line charge density a with its general form. Derive an expression for energy and energy density in the static electric field.	(4) along (7) (5)
8.	(a) (b) (c)	Derive the potential due a point charge at origin. Derive the Mathematical representation of Gauss's law for surface charge de along with its general form. What is potential and potential difference	(4) nsity (7) (5)

- 9. (a) Point Charges Q₁=1nC, Q₂=-2nC, Q₃=3nC and Q₄ = -4nC are placed one by one in the same order at (0,0,0), (1,0,0), (0,0,-1) and (0,0,1) respectively. Calculate the energy in the system.
 - (b) Derive the Mathematical representation of Gauss's law for volume charge density along with its general form. (7)
 - (c) Give the expression for potential due to many point charges and point charge not at origin.
- 10. (a) A point charge Q = 0.4 nC is located at the origin and calculate the absolute potential of A (2, 2, 3). (4)
 - (b) Define electric dipole moment and derive an expression for electric field intensity at point P due to an electric dipole.
 (6)
 - (c) Prove $Q = \Psi$, due to point charge with the help of Gauss's law. (6)

Dr. M. Kaliamoorthy, Dr. M. Jayaprakash, Prof. K. Ravi Staff In-Charge

Dr. V. Chandrasekaran HoD – EEE

Degree / Branch : B.E/EEE

Semester / Year: III / II

Subject Code & Title: 14E304 – ELECTROMAGNETIC THEORY

UNIT III CONDUCTORS, DIELECTRICS AND CAPACITORS

Part-B

1.	(a)	List the properties of conductor	(4)
	(b)	Derive the expression for capacitance of a spherical capacitor.	(8)
	(c)	State continuity equation of current in point form and integral form.	(4)
2.	(a)	Derive point form of ohm's law	(3)
	(b)	Define polarization and derive the mathematical expression for polarization.	(5)
	(c)	State the Boundary condition at the interface between two perfect dielectrics.	(8)
3.	(a)	Derive the Laplace's and Poisson's equation.	(6)
	(b)	Derive the various components of D and E in the boundary between a conductor	r and
		free space.	(7)
	(c)	List the properties of dielectric material.	(3)
4.	(a)	State and derive electric boundary conditions for a dielectric to dielectric med	dium
		and a conductor to dielectric medium.	(7)
	(b)	Derive the expression for energy stored in a capacitor.	(5)
	(c)	Verify that the potential field $V = 3x^2 - 3y^2 + z^2$ satisfies the Laplace's equation	(4)
5.	(a)	Derive an expression for the capacitance of a parallel plate capacitor with	two
		dielectrics of relative permittivity ε_1 and ε_2 respectively interposed between plates.	(7)
	(b)	Calculate the capacitance per kilo meter between a pair of parallel wires each ha	ving
		diameter of 1 cm at a spacing of 50 cm.	(5)
	(c)	State and prove uniqueness theorem.	(4)
6.	(a)	Obtain the expression for energy stored in a capacitor.	(5)
	(b)	Derive the various components of D and E in the boundary between two perfect	
		dielectrics.	(8)
	(c)	Explain conduction, convection and displacement currents?	(3)

7.	(a) (b)	Derive the expression for capacitance of isolated sphere coated with dielectric. Derive the boundary conditions between a conductor and free space.	(5) (8)
	(c)	State the relationship between Current and current density	(3)
8.	(a)	Derive the Laplace's and Poisson's equation.	(5)
	(b)	Derive the boundary conditions between a conductor and a dielectric.	(7)
	(c)	Find the energy stored in a parallel plate capacitor of 0.5m by 1m has a separation	on
		of 2 cm and a voltage difference of 10 V.	(4)
9.	(a)	Obtain the expression for energy stored in a capacitor.	(5)
	(b)	Derive the boundary conditions between two perfect dielectrics.	(8)
	(c)	List the various properties of Dielectric materials.	(3)
10.	. (a)	Calculate the capacitance per kilo meter between a pair of parallel wires each ha	aving
		diameter of 1 cm at a spacing of 50 cm	(5)
	(b)	Derive the capacitance of parallel plate capacitor.	(8)
	(c)	Derive a continuity equation of the current in point form.	(3)

Dr. M. Kaliamoorthy, Dr. M. Jayaprakash, Prof. K. Ravi Staff In-Charge

Dr. V. Chandrasekaran HoD – EEE

Degree / Branch : B.E/EEE

Semester / Year: III / II

Subject Code & Title: 14E304 – ELECTROMAGNETIC THEORY

UNIT IV MAGNETO STATICS

Part-B

1.	(a)	Explain self inductance and mutual inductance.	(4)
	(b)	State and prove Biot-Savart's law.	(8)
	(c)	Write comparison between electric and magnetic field	(4)
2.	(a)	What is meant by magnetic torque?	(3)
	(b)	State and prove ampere's circuit law.	(8)
	(c)	A very long thin, straight wire located along z axis carries a current I in the direction. Find the magnetic field intensity at any point in the free space usin	Z g
		Ampere's law.	(5)
3.	(a)	Explain curl and list the properties of curl.	(4)
	(b)	Find the magnetic flux intensity and density around infinitely long straight	nt
		conductor using Biot-Savart's law.	(8)
	(c)	Write comparison between electric and magnetic field	(4)
4.	(a)	State and prove stokes theorem.	(5)
	(b)	Explain Biot-Savart's Law.	(5)
	(c)	Derive an expression for magnetic field intensity at any point on the infinite sheet	et
		of current carrying conductor using ampere circuital law.	(6)
5.	(a)	State and explain Biot-Savart's law.	(4)
	(b)	Derive the boundary condition between two magnetic materials.	(8)
	(c)	Write the tangential and normal components in the boundary between tw	0
		magnetic materials	(4)
6.	(a)	Explain magnetic dipole and magnetic dipole moment	(4)
	(b)	Derive the inductance of a solenoid and toroid.	(8)
	(c)	What is the relation between relative permeability and susceptibility?	(4)
7.	(a)	Explain magnetic flux and magneto motive force	(4)
	(b)	Derive the inductance of a solenoid and coaxial cable.	(8)
	(c)	Differentiate between Reluctance and Permeance?	(4)

8	(a)	Derive the expression for co-efficient of coupling	(4)
0.	(u) (h)	Derive the inductance of a acquial apple and toroid	(T) (Q)
	(\mathbf{D})	Derive the inductance of a coaxial cable and toroid.	(0)
	(c)	Write comparison between electric and magnetic field	(4)
9.	(a)	Derive an expression for inductance of a Co-axial cable.	(7)
	(b)	Derive the expression for magnetic flux density intensity and density due to an	
		infinite long conductor using Ampere's law.	(5)
	(c)	A coil of 500 turns is wound on a closed iron ring of mean radius of 10 cm cross-section area of 3 cm^2 . Find the self inductance of the winding if the relationship is the relation of the self inductance of the self induct	and ative
		permeability of iron is 800.	(4)
10	. (a)	State the boundary conditions at the interface between two perfect dielectrics.	(4)
	(b)	Obtain the expression for the energy stored in magnetic field	(8)
	(c)	Derive an expression for magnetic field intensity due to an infinite long conducto	or.
			(4)

Dr. M. Kaliamoorthy, Dr. M. Jayaprakash, Prof. K. Ravi Staff In-Charge

Dr. V. Chandrasekaran HoD – EEE

Degree / Branch : B.E/EEE

Semester / Year: III / II

Subject Code & Title: 14E304 – ELECTROMAGNETIC THEORY

UNIT V ELECTRO MAGNETIC WAVES

Part-B

1.	(a)	State and explain the Faraday's laws of electromagnetic induction	(4)
	(b)	Derive Maxwell's first equation with the help of divergence.	(8)
	(c)	State Maxwell's equation for time varying fields.	(4)
2.	(a)	Give the wave equation of a wave in a perfect dielectric medium with $T = 0$.	(4)
	(b)	Derive the wave equation for magnetic field and electric field in phasor form.	(8)
	(c)	State Maxwell's equation for free space.	(4)
3.	(a)	Explain Poynting vector	(4)
	(b)	State and prove boundary conditions by the application of Maxwell's equations.	(8)
	(c)	State Maxwell's equation for static fields.	(4)
4.	(a)	Briefly explain the significance of displacement current.	(4)
	(b)	What is a Poynting Vector and derive the average power by Poynting theorem	(8)
	(c)	State Maxwell's equation for good conductor.	(4)
5.	(a)	Explain the depth of penetration.	(4)
	(b)	Derive the Maxwell's equation using Ampere's Circuital law.	(8)
	(c)	State Maxwell's equation for free space.	(4)
6.	(a)	State and explain the Faraday's laws of electromagnetic induction	(4)
	(b)	Drive EM wave equation for free space in terms of electric and magnetic Field.	(8)
	(c)	State Maxwell's equation for good conductor.	(4)
7.	(a)	State Poynting Theorem.	(4)
	(b)	Derive the general form of wave equation.	(8)
	(c)	Write Maxwell's equation from Faraday's law in integral form and point form.	(4)
8.	(a)	Write short notes on skin effect	(4)
	(b)	Derive the expression for Poynting vector.	(8)
	(c)	Explain about standing wave ratio.	(4)
9.	(a)	Derive the wave equation for magnetic field and electric field in phasor form.	(4)
	(b)	Compare between electric circuits and magnetic circuits.	(8)
	(c)	Briefly explain about skin effect.	(4)

10. (a)	Write short notes on EMI and EMC	(4)
(b)	Derive the average power using Poynting theorem	(8)
(c)	Explain the electromagnetic wave propagation in perfect dielectric.	(4)

Dr. M. Kaliamoorthy, Dr. M. Jayaprakash, Prof. K. Ravi

Dr. V. Chandrasekaran

Staff In-Charge

HoD – EEE