KARPAGAM COLLEGE OF ENGINEERING

(Autonomous)
Coimbatore - 32

END SEMESTER EXAMINATIONS - APRIL 2012

B.E (EEE) - Semester IV

10E402 - ELECTROMAGNETIC THEORY
Time: $\mathbf{3} \mathbf{h r s}$
Max. Marks: 100

Answer ALL questions

PART- A
(10x2 = 20 marks)

1. Find the dot product of the vectors if $\vec{A}=2 \overrightarrow{\mathrm{a}}_{\mathrm{x}}-3 \overrightarrow{\mathrm{a}}_{\mathrm{y}}$ and $\vec{B}=-\overrightarrow{\mathrm{a}}_{\mathrm{x}}+2 \overrightarrow{\mathrm{a}}_{\mathrm{z}}$.
2. A uniform line charge, infinite in extent, $\rho \ell=20 \mathrm{~N} / \mathrm{m}$ lines along the Z axis. Find Electric field intensity at $(6,8,3) \mathrm{m}$.
3. State Gauss's Law.
4. What is an electric dipole?
5. State the boundary conditions at the interface between two perfect dielectrics.
6. Find the energy stored in a parallel plate capacitor of 0.5 m by 1 m has a separation of 2 cm and a voltage difference of 10 V .
7. State Ampere's circuital law.
8. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6 cm diameter. The length of the tube is 60 cm and the solenoid is in air
9. Define depth of penetration.
10. Give the significance of displacement current.

PART - B
(5x16 = 80 marks)
11. a) The charge lies on the Circular disc $\mathrm{r} \leq 4 \mathrm{~m}, \mathrm{z}=0$, with density $\rho_{\mathrm{s}}=\frac{10^{-4}}{r} \mathrm{c} / \mathrm{m}^{2}$.

Determine \vec{E} at $\mathrm{r}=0, \mathrm{z}=3 \mathrm{~m}$.
(OR)
b) Explain the properties and applications of Dot product.
12. a) Describe any two applications of Gauss's law.
(OR)
b) i) Derive an expression for potential due to point charge.
ii) A point charge $\mathrm{Q}=0.4 \mathrm{nC}$ is located at the origin. Obtain the absolute potential of $\mathrm{A}(2,2,3)$.

13. a) Using Laplace's equation, find the capacitance between two concentric spheres with radii
a and b, such that $b>a$ if $V=0$ at $r=b$ and $V=V o$ at $r=a$.
(OR)
b) i) Derive a continuity equation of the current in point form.
ii) Explain the various properties of Dielectric materials.
14. a) Obtain the magnetic field intensity at the centre of a circular loop.
(OR)
b) Define Inductance and Mutual Inductance. Derive an expression for Inductance of a Co-axial cable.
15. a) From various basic laws, derive a Maxwell equations for static fields.
(OR)
b) What is a Poynting Vector and obtain the average power using Poynting theorem.
