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Introduction 

 

For energy conversion between electrical and mechanical forms, electromechanical 

devices are developed. In general, electromechanical energy conversion devices can be 

divided into three categories: 

(1) Transducers (for measurement and control) 

These devices transform the signals of different forms. Examples are microphones, 

pickups, and speakers. 

(2) Force producing devices (linear motion devices) 

These type of devices produce forces mostly for linear motion drives, such as relays, 

Solenoids (linear actuators), and electromagnets. 

(3) Continuous energy conversion equipment 

These devices operate in rotating mode. A device would be known as a generator if it 

convert mechanical energy into electrical energy, or as a motor if it does the other way 

around (from electrical to mechanical). 

Since the permeability of ferromagnetic materials is much larger than the permittivity of 

dielectric materials, it is more advantageous to use electromagnetic field as the medium 

for electromechanical energy conversion. As illustrated in the following diagram, an 

electromechanical system consists of an electrical subsystem (electric circuits such as 

windings), a magnetic subsystem (magnetic field in the magnetic cores and air gaps), and 

a mechanical subsystem (mechanically movable parts such as a plunger in a linear 

actuator and a rotor in a rotating electrical machine). Voltages and currents are used to 

describe the state of the electrical subsystem and they are governed by the basic circuital 



laws: Ohm's law, KCL and KVL. The state of the mechanical subsystem can be described 

in terms of positions, velocities, and accelerations, and is governed by the Newton's laws. 

The magnetic subsystem or magnetic field fits between the electrical and mechanical 

subsystems and acting as a "ferry" in energy transform and conversion. The field 

quantities such as magnetic flux, flux density, and field strength, are governed by the 

Maxwell's equations. When coupled with an electric circuit, the magnetic flux interacting 

with the current in the circuit would produce a force or torque on a mechanically movable 

part. On the other hand, the movement of the moving part will could variation of the 

magnetic flux linking the electric circuit and induces an electromotive force (emf) in the 

circuit. The product of the torque and speed (the mechanical power) equals the active 

component of the product of the emf and current. Therefore, the electrical energy and the 

mechanical energy are inter converted via the magnetic field. 

 

In this chapter, the methods for determining the induced emf in an electrical circuit and 

force/torque experienced by a movable part will be discussed. The general concept of 

electromechanical system modeling will also be illustrated by a singly excited rotating 

system. 

 



Induced emf in Electromechanical Systems 

The diagram below shows a conductor of length l placed in a uniform magnetic field of 

flux density B. When the conductor moves at a speed v, the induced emf in the conductor 

can be determined by 

 

The direction of the emf can be determined by the "right hand rule" for cross products. In 

a coil of N turns, the induced emf can be calculated by 

 

Whereλ is the flux linkage of the coil and the minus sign indicates that the induced 

current opposes the variation of the field. It makes no difference whether the variation of 

the flux linkage is a result of the field variation or coil movement. In practice, it would 

convenient if we treat the emf as a voltage. The above express can then be rewritten as 

 

if the system is magnetically linear, i.e. the self inductance is independent of the current. 

It should be noted that the self inductance is a function of the displacement x since 

there is a moving part in the system. 

Example: 

Calculate the open circuit voltage between the brushes on a Faraday's disc as shown 

schematically in the diagram below. 

 

Solution: 



 

Choose a small line segment of length dr at position ( )21 rrrr ≤≤ from the center of the 

disc between the brushes. The induced emf in this elemental length is then 

 

Where rrV ω= Therefore 

 

Example: 

Sketch L(x) and calculate the induced emf in the excitation coil for a linear actuator 

shown below. 

 

Solution: 

 



 

Force and Torque on a Current Carrying Conductor: 

 

The force on a moving particle of electric charge q in a magnetic field is given by the 

Lorentz's force law: 

 

The force acting on a current carrying conductor can be directly derived from the 

equation as 

 

where C is the contour of the conductor. For a homogeneous conductor of length l 

carrying current I in a uniform magnetic field, the above expression can be reduced to 

 



In a rotating system, the torque about an axis can be calculated by 

 

Where r is the radius vector from the axis towards the conductor 

 

Force and Torque Calculation from Energy and Co energy: 

 

A Singly Excited Linear Actuator 

Consider a singly excited linear actuator as shown below. The winding resistance is R. At 

a certain time instant t, we record that the terminal voltage applied to the excitation 

winding is v, the excitation winding current i, the position of the movable plunger x, and 

the force acting on the plunger F with the reference direction chosen in the positive 

direction of the x axis, as shown in the diagram. After a time interval dt, we notice that 

the plunger has moved for a distance dx under the action of the force F. The mechanical 

done by the force acting on the plunger during this time interval is thus 

 

 

A singly excited linear actuator 



The amount of electrical energy that has been transferred into the magnetic field and 

converted into the mechanical work during this time interval can be calculated by 

subtracting the power loss dissipated in the winding resistance from the total power fed 

into the excitation winding as 

 

From the above equation, we know that the energy stored in the magnetic field is a 

function of the flux linkage of the excitation winding and the position of the plunger. 

Mathematically, we can also write 

 

Therefore, by comparing the above two equations, we conclude 

 

From the knowledge of electromagnetic, the energy stored in a magnetic field can be 

expressed as 

 

For a magnetically linear (with a constant permeability or a straight line magnetization 

curve such that the inductance of the coil is independent of the excitation current) system, 

the above expression becomes 

 

and the force acting on the plunger is then 



 

In the diagram below, it is shown that the magnetic energy is equivalent to the area above 

the magnetization or λ -i curve. Mathematically, if we define the area underneath the 

magnetization curve as the co energy (which does not exist physically), i.e. 

 

we can obtain 

 
Therefore 

 

 
From the above diagram, the co energy or the area underneath the magnetization curve 

can be calculated by 

 



For a magnetically linear system, the above expression becomes 

 

and the force acting on the plunger is then 

 

Example: 

Calculate the force acting on the plunger of a linear actuator discussed in this section. 

Solution: 

Assume the permeability of the magnetic core of the actuator is infinite, and hence the 

system can be treated as magnetically linear. From the equivalent magnetic circuit of the 

actuator shown in figure (c) above, one can readily find the self inductance of the 

excitation winding as 

 

 

Therefore, the force acting on the plunger is 

 

 



The minus sign of the force indicates that the direction of the force is to reduce the 

displacement so as to reduce the reluctance of the air gaps. Since this force is caused by 

the variation of magnetic reluctance of the magnetic circuit, it is known as the reluctance 

force. 

Singly Excited Rotating Actuator 

The singly excited linear actuator mentioned above becomes a singly excited rotating 

actuator if the linearly movable plunger is replaced by a rotor, as illustrated in the 

diagram below. Through a derivation similar to that for a singly excited linear actuator, 

one can readily obtain that the torque acting on the rotor can be expressed as the negative 

partial derivative of the energy stored in the magnetic field against the angular 

displacement or as the positive partial derivative of the co energy against the angular 

displacement, as summarized in the following table. 

 

 



 

 

Doubly Excited Rotating Actuator 

The general principle for force and torque calculation discussed above is equally 

applicable to multi-excited systems. Consider a doubly excited rotating actuator shown 

Schematically in the diagram below as an example. The differential energy and co energy 

functions can be derived as following: 

 

 

A doubly excited actuator 

 



 

 
For magnetically linear systems, currents and flux linkages can be related by constant 

inductances as following 

 

Where  

The magnetic energy and co energy can then be expressed as 



 

Respectively, and it can be shown that they are equal. 

Therefore, the torque acting on the rotor can be calculated as 

 

Because of the salient (not round) structure of the rotor, the self inductance of the stator is 

a function of the rotor position and the first term on the right hand side of the above 

torque expression is nonzero for that 011 ≠
θd

dL
. Similarly, the second term on the right 

hand side of the above torque express is nonzero because of the salient structure of the 

stator. Therefore, these two terms are known as the reluctance torque component. The last 

term in the torque expression, however, is only related to the relative position of the 

stator and rotor and is independent of the shape of the stator and rotor poles. 

 

Model of Electromechanical Systems 

To illustrate the general principle for modeling of an electromechanical system, we still 

use the doubly excited rotating actuator discussed above as an example. For convenience, 

we plot it here again. As discussed in the introduction, the mathematical model of an 

electromechanical system consists of circuit equations for the electrical subsystem and 

force or torque balance equations for the mechanical subsystem, whereas the interactions 

between the two subsystems via the magnetic field can be expressed in terms of the emf's 

and the electromagnetic force or torque. Thus, for the doubly excited rotating actuator, 

we can write 

 

 



 

A doubly excited actuator 

 

is the angular speed of the rotor, Tload the load torque, and J the inertia of the rotor and the 

mechanical load which is coupled to the rotor shaft. The above equations are nonlinear 

differential equations which can only be solved numerically. In the format of state 

equations, the above equations can be rewritten as 

 

 



 

Together with the specified initial conditions (the state of the system at time zero in terms 

of the state variables): 

 

the above state equations can be used to simulate the dynamic performance of the doubly 

excited rotating actuator. Following the same rule, we can derive the state equation model 

of any electromechanical systems. 


