3-Phase Induction Machines - Dynamic Modeling Using Reference Frame Theory

Winding arrangement for a 2-pole, 3-phase, wye-connected symmetrical induction machine is shown in Fig.1. Stator windings are identical, sinusoidally distributed windings, displaced by 120°, with Ns equivalent turns and resistance r_{s}. Consider the case when rotor windings are also three identical sinusoidally distributed windings, displaced by 120°, with Nr equivalent turns and resistance r_{r}.

Fig1. 2 pole Three Phase Induction Machine
In abc reference frame, voltage equations can be written as

$$
\begin{aligned}
& V_{a b c s}=r_{s} i_{a b c s}+p \lambda_{a b c s} \\
& V_{a b c r}=r_{r} i_{a b c r}+p \lambda_{a b c r} \\
& \left(f_{a b c s}\right)^{T}=\left[\begin{array}{lll}
f_{a s} & f_{b s} & f_{c s}
\end{array}\right], \quad\left(f_{a b c r}\right)^{T}=\left[\begin{array}{lll}
f_{a r} & f_{b r} & f_{c r}
\end{array}\right]
\end{aligned}
$$

s : denotes variables and parameters associated with the stator circuits and r: denotes variables and parameters associated with the rotor circuits.

$$
\left[\begin{array}{l}
\lambda_{a b s s} \\
\lambda_{a b c r}
\end{array}\right]=\left[\begin{array}{cc}
L_{s} & L_{s r} \\
\left(L_{s r}\right)^{T} & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{a b s s} \\
i_{a b c r}
\end{array}\right]
$$

Where,

$$
\mathbf{L}_{s}=\left[\begin{array}{ccc}
L_{l s}+L_{m s} & -\frac{1}{2} L_{m s} & -\frac{1}{2} L_{m s} \\
-\frac{1}{2} L_{m s} & L_{l s}+L_{m s} & -\frac{1}{2} L_{m s} \\
-\frac{1}{2} L_{m s} & -\frac{1}{2} L_{m s} & L_{l s}+L_{m s}
\end{array}\right], \quad \mathbf{L}_{r}=\left[\begin{array}{ccc}
L_{l r}+L_{m r} & -\frac{1}{2} L_{m r} & -\frac{1}{2} L_{m r} \\
-\frac{1}{2} L_{m r} & L_{l r}+L_{m r} & -\frac{1}{2} L_{m r} \\
-\frac{1}{2} L_{m r} & -\frac{1}{2} L_{m r} & L_{l r}+L_{m r}
\end{array}\right]
$$

L_{ls} and L_{ms} are, respectively, the leakage and magnetizing inductance of the stator windings. L_{lr} and L_{mr} are, respectively, the leakage and magnetizing inductance of the rotor windings.

$$
\mathbf{L}_{s r}=\mathbf{L}_{r s}=L_{m s}\left[\begin{array}{ccc}
\cos \theta_{r} & \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) \\
\cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & \cos \theta_{r} & \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) \\
\cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & \cos \theta_{r}
\end{array}\right],
$$

" $\mathrm{L}_{\text {sr }}$ " is the amplitude of the mutual inductances between stator and rotor windings. A majority of induction machines are not equipped with coil-wound rotor windings; instead, the current flows in copper or aluminum bars which are uniformly distributed in a common ring at each end of the rotor. This type of rotor is referred to as a squirrel-cage rotor. Rotor variables can be referred to the stator windings by appropriate turn's ratio.

$$
\begin{aligned}
& i_{a b c r}^{\prime}=\frac{N_{r}}{N_{s}} i_{a b c r}, \quad V_{a b c r}^{\prime}=\frac{N_{s}}{N_{r}} V_{a b c r}, \quad \lambda_{a b c r}^{\prime}=\frac{N_{s}}{N_{r}} \lambda_{a b c r}, \quad L_{m s}=\left(\frac{N_{s}}{N_{r}}\right)^{2} L_{s r} \\
& {\left[\mathbf{L}_{s r}^{\prime}\right]=\frac{N_{s}}{N_{r}}\left[\mathbf{L}_{s r}\right]=L_{m s}\left[\begin{array}{ccc}
\cos \theta_{r} & \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) \\
\cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & \cos \theta_{r} & \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) \\
\cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & \cos \theta_{r}
\end{array}\right],}
\end{aligned}
$$

Also,

$$
L_{m r}=\left(\frac{N_{r}}{N_{s}}\right)^{2} L_{m s,} \quad\left[\mathbf{L}_{r}^{\prime}\right]=\left(\frac{N_{r}}{N_{s}}\right)^{2}\left[\mathbf{L}_{r}\right]
$$

$$
\left[\mathbf{L}_{r}^{\prime}\right]=\left[\begin{array}{ccc}
L_{l r}^{\prime}+L_{m r} & -\frac{1}{2} L_{m s} & -\frac{1}{2} L_{m s} \\
-\frac{1}{2} L_{m s} & L_{l r}+L_{m s} & -\frac{1}{2} L_{m s} \\
-\frac{1}{2} L_{m s} & -\frac{1}{2} L_{m s} & L_{l r}+L_{m s}
\end{array}\right]
$$

Where,

$$
L_{l r}^{\prime}=\left(\frac{N_{s}}{N_{r}}\right)^{2} L_{l r}
$$

Flux linkage may be expressed as

$$
\left[\begin{array}{l}
\lambda_{a b c s} \\
\lambda_{a b c r}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{L}_{s} & \mathbf{L}_{s r}^{\prime} \\
\left(\mathbf{L}_{s r}^{\prime}\right)^{T} & \mathbf{L}_{r}^{\prime}
\end{array}\right]\left[\begin{array}{l}
i_{a b c s} \\
i_{a b c r}^{\prime}
\end{array}\right]
$$

Voltage equations expressed in terms of machine variables referred to the stator windings may be written as

$$
\left[\begin{array}{c}
V_{a b c s} \\
V_{a b c r}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{r}_{s}+p \mathbf{L}_{s} & p \mathbf{L}_{s r}^{\prime} \\
p\left(\mathbf{L}_{s r}^{\prime}\right)^{T} & \mathbf{r}_{r}^{\prime}+p \mathbf{L}_{r}^{\prime}
\end{array}\right]\left[\begin{array}{l}
i_{a b c s} \\
i_{a b c r}^{\prime}
\end{array}\right]
$$

Where,

$$
r_{r}^{\prime}=\left(\frac{N_{s}}{N_{r}}\right)^{2} r_{r}
$$

Energy stored in the coupling field may be written as

$$
\begin{aligned}
& W_{c}= W_{f}= \\
& \frac{1}{2}\left(i_{a b c s}\right)^{T}\left(\mathbf{L}_{s}-\mathbf{L}_{l s} \mathbf{I}\right) i_{a b c s}+ \\
&\left(i_{a b c s}\right)^{T}\left(\mathbf{L}_{s r}\right) i_{a b c r}^{\prime}+\frac{1}{2}\left(i_{a b c r}^{\prime}\right)^{T}\left(\mathbf{L}_{r}^{\prime}-\mathbf{L}_{l r}^{\prime} \mathbf{I}\right) i_{a b c r}^{\prime}
\end{aligned}
$$

Where, I: identity matrix
Voltage equations expressed in terms of machine variables referred to the stator windings may be written as

$$
T_{e}\left(i_{j}, \theta_{r}\right)=\frac{P}{2} \frac{\partial W_{c}\left(i_{j}, \theta_{r}\right)}{\partial \theta_{r}}
$$

Since \mathbf{L}_{S} and \mathbf{L}_{r} are functions of θ_{r}, the above equation for the electromagnetic torque yields.

$$
\begin{aligned}
& T_{e}=\left(\frac{p}{2}\right)\left(i_{a b c s}\right)^{T} \frac{\partial}{\partial \theta_{r}}\left[\mathbf{L}_{s r}^{\prime}\right] j_{a b c r}^{\prime} \\
& =-\frac{P}{2} L_{m s}\left\{\begin{array}{l}
{\left[i_{a s}\left(i_{a r}^{\prime}-\frac{1}{2} i_{b r}^{\prime}-\frac{1}{2} i_{c r}^{\prime}\right)+i_{b s}\left(i_{b r}^{\prime}-\frac{1}{2} i_{a r}^{\prime}-\frac{1}{2} i_{c r}^{\prime}\right)+i_{c s}\left(i_{c r}^{\prime}-\frac{1}{2} i_{b r}^{\prime}-\frac{1}{2} i_{a r}^{\prime}\right)\right] \sin \theta_{r}} \\
+\frac{\sqrt{3}}{2}\left[i_{a s}\left(i_{b r}^{\prime}-i_{c r}^{\prime}\right)+i_{b s}\left(i_{c r}^{\prime}-i_{a r}^{\prime}\right)+i_{c s}\left(i_{a r}^{\prime}-i_{b r}^{\prime}\right)\right] \cos \theta_{r}
\end{array}\right\}
\end{aligned}
$$

The torque and rotor speed are related by

$$
T_{e}=J\left(\frac{2}{P}\right) p \omega_{r}+T_{L}
$$

Equations of Transformation for Rotor Circuit

In the analysis of induction machines it is desirable to transform the variables associated with the symmetrical rotor windings to the arbitrary reference frame.

$$
\begin{aligned}
& f_{q d 0 r}^{\prime}=\mathbf{K}_{r} f_{a b c r}^{\prime} \\
& \left(f_{q d 0 r}^{\prime}\right)^{T}=\left[\begin{array}{lll}
f_{q r}^{\prime} & f_{d r}^{\prime} & f_{0 r}^{\prime}
\end{array}\right] \quad \mathbf{K}_{r}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \beta & \cos \left(\beta-\frac{2 \pi}{3}\right) & \cos \left(\beta+\frac{2 \pi}{3}\right) \\
\left(f_{a b c r}^{\prime}\right)^{T}=\left[\begin{array}{lll}
f_{a r}^{\prime} & f_{b r}^{\prime} & f_{c r}^{\prime}
\end{array}\right] \\
\sin \beta & \sin \left(\beta-\frac{2 \pi}{3}\right) & \sin \left(\beta+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right], ~
\end{aligned}
$$

where, $\beta=\theta-\theta$ r from figure below

Fig. 2. Axis of 2-pole, 3-phase Symmetrical machine.

$$
\theta_{r}=\int_{0}^{t} \omega_{r}(t) d t+\theta_{r}(0)
$$

$$
\left(\mathbf{K}_{r}\right)^{-1}=\left[\begin{array}{ccc}
\cos \beta & \sin \beta & 1 \\
\cos \left(\beta-\frac{2 \pi}{3}\right) & \sin \left(\beta-\frac{2 \pi}{3}\right) & 1 \\
\cos \left(\beta+\frac{2 \pi}{3}\right) & \sin \left(\beta+\frac{2 \pi}{3}\right) & 1
\end{array}\right]
$$

" r " subscript indicates the variable, parameters and transformation associated with rotating circuits.

Voltage Equations in Arbitrary Reference Frame Variables

For two-pole, 3-phase symmetrical induction,

$$
\begin{array}{llll}
\bar{V}_{a b c s}=\bar{r}_{s} i_{a b c s}+p \lambda_{a b c s} & \lambda_{a b c s}=\left(\bar{L}_{s}\right) i_{a b c s}+\left(L_{s r}^{\prime}\right) i_{a b c r}^{\prime} & \bar{V}_{a b c s}=\mathbf{K}_{s} \bar{V}_{q d 0 s}, & i_{a b c s}=\mathbf{K}_{s} \bar{i}_{q d 0 s} \\
V_{a b c r}^{\prime}=r_{r}^{\prime} i_{a b c r}^{\prime}+p \lambda_{a b c r}^{\prime} & \lambda_{a b c r}^{\prime}=\left(\bar{L}_{s r}^{\prime}\right)^{T} i_{a b c s}+\left(L_{r}^{\prime}\right) i_{a b c r}^{\prime} & V_{a b c r}^{\prime}=\mathbf{K}_{r} \bar{V}_{q d 0 r}^{\prime}, i_{a b c r}^{\prime}=\mathbf{K}_{r} \bar{i}_{q d 0 s}^{\prime}
\end{array}
$$

Using the above transformation equations, we can transform the voltage equations to an arbitrary reference frame rotating at speed of ω.

$$
\begin{aligned}
V_{q d 0 s} & =r_{s} i_{q d 0 s}+\omega \lambda_{q d s}+p \lambda_{q d 0 s} \\
V_{q d 0 r}^{\prime} & =r_{r}^{\prime} i_{q d 0 r}+\left(\omega-\omega_{r}\right) \lambda_{q d r}^{\prime}+p \lambda_{q d 0 r}^{\prime}
\end{aligned}
$$

where, $\left(\lambda_{q d s}\right)^{T}=\left[\begin{array}{lll}\lambda_{d s} & -\lambda_{q s} & 0\end{array}\right], \quad\left(\lambda_{q d r}^{\prime}\right)^{T}=\left[\begin{array}{lll}\lambda_{d r}^{\prime} & -\lambda_{q r}^{\prime} & 0\end{array}\right]$
Flux linkage equations in abc reference frame can be transformed to qd axes using K_{s} and K_{r} transformation matrices.

$$
\left[\begin{array}{l}
\lambda_{q d 0 s} \\
\lambda_{q d 0 r}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{K}_{s} \mathbf{L}_{s}\left(\mathbf{K}_{s}\right)^{-1} & \mathbf{K}_{s} \mathbf{L}_{s r}^{\prime}\left(\mathbf{K}_{r}\right)^{-1} \\
\mathbf{K}_{r} \mathbf{L}_{s r}^{\prime}\left(\mathbf{K}_{s}\right)^{-1} & \mathbf{K}_{r} \mathbf{L}_{r}^{\prime}\left(\mathbf{K}_{r}\right)^{-1}
\end{array}\right]\left[\begin{array}{l}
i_{q d 0 s} \\
i_{q d 0 r}^{\prime}
\end{array}\right]
$$

Where

$$
\begin{aligned}
& \mathbf{K}_{s} \mathbf{L}_{s}\left(\mathbf{K}_{s}\right)^{-1}=\left[\begin{array}{ccc}
L_{l s}+M & 0 & 0 \\
0 & L_{l s}+M & 0 \\
0 & 0 & L_{l s}+M
\end{array}\right], \quad M=\frac{3}{2} L_{m s} \\
& \mathbf{K}_{r} \mathbf{L}_{r}^{\prime}\left(\mathbf{K}_{r}\right)^{-1}=\left[\begin{array}{ccc}
L_{l r}^{\prime}+M & 0 & 0 \\
0 & L_{l r}^{\prime}+M & 0 \\
0 & 0 & L_{l r}^{\prime}+M
\end{array}\right], \quad M=\frac{3}{2} L_{m s}
\end{aligned}
$$

$$
\mathbf{K}_{s} \mathbf{L}_{s r}^{\prime}\left(\mathbf{K}_{r}\right)^{-1}=\mathbf{K}_{r}\left(\mathbf{L}_{s r}^{\prime}\right)^{T}\left(\mathbf{K}_{s}\right)^{-1}=\left[\begin{array}{ccc}
M & 0 & 0 \\
0 & M & 0 \\
0 & 0 & M
\end{array}\right]
$$

Voltage equations written in expanded form can be expressed as
$V_{q s}=r_{s} i_{q s}+\omega \lambda_{d s}+p \lambda_{q s} \quad V_{q r}^{\prime}=r_{r}^{\prime} i_{q r}^{\prime}+\left(\omega-\omega_{r}\right) \lambda_{d r}^{\prime}+p \lambda_{q r}^{\prime}$
$V_{d s}=r_{s} i_{d s}-\omega \lambda_{q s}+p \lambda_{d s}, \quad \quad V_{d r}^{\prime}=r_{r}^{\prime} i_{d r}^{\prime}-\left(\omega-\omega_{r}\right) \lambda_{q r}^{\prime}+p \lambda_{d r}^{\prime}$
$V_{0 s}=r_{s} i_{0 s}+p \lambda_{0 s} \quad V_{0 r}^{\prime}=r_{r}^{\prime} i_{0 r}^{\prime}+p \lambda_{0 r}^{\prime}$
Flux linkage equations are
$\lambda_{q s}=L_{l s} i_{q s}+M\left(i_{q s}+i_{q r}^{\prime}\right)$

$$
\begin{aligned}
& \lambda_{q r}^{\prime}=L_{l, r q r}^{\prime} i_{q r}^{\prime}\left(i_{q s}+i_{q r}^{\prime}\right) \\
& \lambda_{d r}^{\prime}=L_{, k d r}^{\prime}+M\left(i_{d s}^{\prime}+i_{d r}^{\prime}\right) \\
& \left.\lambda_{0 r r}^{\prime}=L_{l, r}^{\prime}\right)
\end{aligned}
$$

Since machine and power system parameters are nearly always given in ohms or percent or per unit of a base impedance, it is convenient to express the voltage and flux linkage equations in terms of reactances rather than inductances.
Let

$$
\varphi=\lambda \omega_{b}
$$

Then
$V_{q s}=r_{s} i_{q s}+\frac{\omega}{\omega_{b}} \varphi_{d s}+p \varphi_{q s} \quad V_{q r}^{\prime}=r_{r}^{\prime} i_{q r}^{\prime}+\frac{\left(\omega-\omega_{r}\right)}{\omega_{b}} \varphi_{d r}^{\prime}+\frac{p}{\omega_{b}} \varphi_{q r}^{\prime}$
$V_{d s}=r_{s} i_{d s}-\frac{\omega}{\omega_{b}} \varphi_{q s}+\frac{p}{\omega_{b}} \varphi_{d s}, \quad V_{d r}^{\prime}=r_{r}^{\prime} i_{d r}^{\prime}-\frac{\left(\omega-\omega_{r}\right)}{\omega_{b}} \varphi_{q r}^{\prime}+\frac{p}{\omega_{b}} \varphi_{d r}^{\prime}$
$V_{0 s}=r_{s} i_{0 s}+\frac{p}{\omega_{b}} \varphi_{0 s} \quad V_{0 r}^{\prime}=r_{r}^{\prime} i_{0 r}^{\prime}+\frac{p}{\omega_{b}} \varphi_{0 r}^{\prime}$
And flux linkages become flux linkages per second with the units of volts.
$\varphi_{q s}=X_{l s} i_{q s}+X_{m}\left(i_{q s}+i_{q r}^{\prime}\right) \quad \varphi_{q r}^{\prime}=X_{l r}^{\prime} i_{q r}^{\prime}+X_{m}\left(i_{q s}+i_{q r}^{\prime}\right)$
$\varphi_{d s}=X_{l s} i_{d s}+X_{m}\left(i_{d s}+i_{d r}^{\prime}\right), \quad \varphi_{d r}^{\prime}=X_{l r}^{\prime} i_{d r}^{\prime}+X_{m}\left(i_{d s}+i_{d r}^{\prime}\right)$
$\varphi_{0 s}=X_{l s} i_{0 s} \quad \varphi_{0 r}^{\prime}=X_{l r}^{\prime} i_{0 r}^{\prime}$

q-axis circuit

Equivalent circuits of a 3-phase, symmetrical induction machine with rotating q-d axis at speed of ω.

d-axis circuit

Equivalent circuits of a 3-phase, symmetrical induction machine with rotating q-d axis at speed of ω.

Os-circuit

Or-circuit

Equivalent circuits of a 3-phase, symmetrical induction machine with rotating q-d axis at speed of ω.

Electromagnetic torque in terms of arbitrary reference frame variables may be obtained by substituting the equations of transformation in

$$
\begin{aligned}
T_{e} & =\frac{P}{2}\left(i_{a b c s}\right)^{T} \frac{\partial}{\partial \theta_{r}}\left(L_{s r}^{\prime}\right) i_{a b c r}^{\prime} \\
& =\frac{P}{2}\left[\left(\mathbf{K}_{s}\right)^{-1} i_{q d 0 s}\right]^{T} \frac{\partial}{\partial \theta_{r}}\left(L_{s r}^{\prime}\right)\left(\mathbf{K}_{r}\right)^{-1} i_{q d 0 r}^{\prime}
\end{aligned}
$$

After some work, we will have the following:

$$
T_{e}=\left(\frac{3}{2}\right)\left(\frac{P}{2}\right) M\left(i_{q s} i_{d r}^{\prime}-i_{d s} i_{q r}^{\prime}\right)
$$

Where, Te is positive for motor action. Other expressions for the electromagnetic torque of an induction machine are

$$
\begin{aligned}
& T_{e}=\left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\lambda_{q r}^{\prime} i_{d r}^{\prime}-\lambda_{d r}^{\prime} i_{q r}^{\prime}\right) \\
& T_{e m}=\left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\lambda_{d s} i_{q s}-\lambda_{q s} i_{d s}\right) \\
& T_{e}=\left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\frac{1}{\omega_{b}}\right)\left(\varphi_{q r}^{\prime} i_{d r}^{\prime}-\varphi_{d r}^{\prime} i_{q r}^{\prime}\right)
\end{aligned}
$$

