
Chapter 10 

CLARKE’S AND PARK’S TRANSFORMATIONS 

10.1 Introduction 

The performance of three-phase ac machines are described by their voltage 
equations and inductances. It is well known that some machine inductances are 
functions of rotor speed.  The coefficients of the differential equations, which 
describe the behavior of these machines, are time varying except when the rotor is 
stalled.  A change of variables is often used to reduce the complexity of these 
differential equations. There are several different methods to transform variables.  
In this chapter, the well-known Clarke and Park transformations are introduced, 
modeled, and implemented on the LF2407 DSP. Using these transformations, many 
properties of electric machines can be studied without complexities in the voltage 
equations. These transformations make it possible for control algorithms to be 
implemented on the DSP.  By this approach, many of the basic concepts and 
interpretations of this general transformation are concisely established.     

10.2 Clarke’s Transformation 

The transformation of stationary circuits to a stationary reference frame was 
developed by E. Clarke [2]. The stationary two-phase variables of Clarke’s 
transformation are denoted as α and β. As shown in Fig. 10.1, α-axis and β-axis are 
orthogonal.  
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Figure 10.1  Clarke's transformation. 

In order for the transformation to be invertible, a third variable, known as the 
zero-sequence component, is added. The resulting transformation is   

  (10.1) [ ] [ ]abcfαβf Τ 00 =αβ

where 

    [ ] [ Tffff 00 βααβ = ]
and  

  [ ] [ ]Tcbaabc ffff =

209 
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where  represents voltage, current, flux linkages, or electric charge f
and the transformation matrix, , is given by 0αβT
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The inverse transformation is given by 

   (10.3) [ ] [ ]0
1

0 αβαβ fTfabc
−=

where the inverse transformation matrix is presented by 
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10.3 Park’s Transformation  

In the late 1920s, R.H. Park [1] introduced a new approach to electric machine 
analysis.  He formulated a change of variables which replaced variables such as 
voltages, currents, and flux linkages associated with fictitious windings rotating 
with the rotor. He referred the stator and rotor variables to a reference frame fixed 
on the rotor.  From the rotor point of view, all the variables can be observed as 
constant values. Park’s transformation, a revolution in machine analysis, has the 
unique property of eliminating all time varying inductances from the voltage 
equations of three-phase ac machines due to the rotor spinning. 

Although changes of variables are used in the analysis of ac machines to 
eliminate time-varying inductances, changes of variables are also employed in the 
analysis of various static and constant parameters in power system components. 
Fortunately, all known real transformations for these components are also contained 
in the transformation to the arbitrary reference frame. The same general 
transformation used for the stator variables of ac machines serves the rotor variables 
of induction machines. Park’s transformation is a well-known three-phase to two-
phase transformation in synchronous machine analysis.  Park’s transformation is 
presented in Fig. 10.2. 
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Figure 10.2   Park's transformation. 

The transformation equation is of the form 

 [ ] [ ]abcsqdsqd fTf )(00 θ=  (10.5) 
where 

    [ ] [ ]Tsdsqssqd ffff 00 =
 

and        [ ]  [ T
csbsasabcs ffff = ]

and the dq0 transformation matrix is defined as 
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θ is the angular displacement of Park’s reference frame and can be calculated by 

   (10.7) )0()(
0

θζζωθ += ∫
t

d

where ζ is the dummy variable of integration. It can be shown that for the inverse 
transformation we can write 

 [ ] [ ]sqdqdabcs fTf 0
1

0 )( ⋅= −θ   (10.8) 
where the inverse of Park’s transformation matrix is given by 
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 In the previous equations, the angular displacement θ must be continuous, but 
the angular velocity associated with the change of variables is unspecified. The 
frame of reference may rotate at any constant, varying angular velocity, or it may 
remain stationary. The angular velocity of the transformation can be chosen 
arbitrarily to best fit the system equation solution or to satisfy the system 
constraints.  The change of variables may be applied to variables of any waveform 
and time sequence; however, we will find that the transformation given above is 
particularly appropriate for an a-b-c sequence. 

 

10.4 Transformations Between Reference Frames 

In order to reduce the complexity of some derivations, it is necessary to 
transform the variables from one reference frame to another one. To establish this 
transformation between any two reference frames, we can denote y as the new 
reference frame and x as the old reference frame. Both new and old reference 
frames are shown in Fig. 10.3.  
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Figure 10.3   Transformation between two reference frames. 

It is assumed that the reference frame x is rotating with angular velocity ωx and 
the reference frame y is spinning with the angular velocity ωy.  θx and θy are angular 
displacements of reference frames x and y, respectively.  In this regard, we can 
rewrite the transformation equation as 

 [ ] [ ]sqd
yx
sqd

y
sqd ff T 000 ⋅= →   (10.10) 
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But we have 

   (10.11) 



⋅=



 fTf abcs

x
sqd

x
sqd 00

If we substitute (10.11) in (10.10) we get 

   (10.12) 



⋅⋅=



 → fTTf abcs

x
sqd

yx
sqd

y
sqd 000

In another way, we can find out that 

  (10.13) 



⋅=



 fTf abcs

y
sqd

y
sqd 00

From (10.12) we obtain 

  (10.14) 
1

000
−→ ⋅= TTT x

sqd
y

sqd
yx
sqd

Then, the desired transformation can be expressed by the following matrix: 

  (10.15) 
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10.5 Field Oriented Control (FOC) Transformations 

In the case of FOC of electric machines, control methods are performed in a 
two-phase reference frame fixed to the rotor (qr-dr) or fixed to the excitation 
reference frame (qe-de).  We want to transform all the variables from the three-phase 
a-b-c system to the two-phase stationary reference frame and then retransform these 
variables from the stationary reference frame to a rotary reference frame with 
arbitrary angular velocity of ω.  These transformations are usually cascaded.  The 
block diagram of this procedure is shown in Fig. 10.4.  
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Figure 10.4  Machine side transformation in field oriented control. 

 

   

Copyright © 2004 CRC Press, LLC



     Clarke’s and Park’s Transformations 214

In this figure, f denotes the currents or voltages and qe-de represents the 
arbitrary rotating reference frame with angular velocity ωe and qs-ds represents the 
stationary reference frame. In the vector control method, after applying field- 
oriented control it is necessary to transform variables to stationary a-b-c system.  
This can be achieved by taking the inverse transformation of variables from the 
arbitrary rotating reference frame to the stationary reference frame and then to the a-
b-c system.  The block diagram of this procedure is shown in Fig. 10.5.  In this 
block diagram, * is a representation of commanded or desired values of variables. 

 

ee dq −

cba −−

eθcos eθsin

*e
qf

*e
df

Control

*s
qf

*s
df

f a
*

f b
*

f c
*

dq ss −

dq ss −

 

Figure 10.5  Variable transformation in the field oriented control. 

 
10.6 Implementing Clarke’s and Park’s Transformations on the LF240X 

10.6.1 Implementing Clarke’s Transformation 

It is desired to transfer the three-phase stationary parameters , , and  
from the

af bf cf
 a-b-c system to the two-phase stationary reference frame. It is assumed that 

the system is balanced and we have 

   (10.16) 0=++ cba fff
We can rewrite (10.1) as follows: 

 cba ffff
3
1

3
1

3
2

−−=α  (10.17) 

 )(
3

1
cb fff −=β   (10.18) 

Substituting cf  from (10.16) into (10.17) and (10.18) results in 

  (10.19) aff =α
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 )2(
3

1
ba fff +=β   (10.20) 

 
10.6.1.1 Inputs and Outputs of Clarke’s Transformation Block 

The inputs and outputs of Clarke’s transformation are shown in Fig. 10.6. As it 
is shown in this figure,  and  are inputs and  and  are outputs of this 
transformation. 

af bf αf βf

CLARKE
TRANSFORMATION

fa

fb

fα

fβ

Q15 Format

Q15 Format

Q15 Format

Q15 Format  
Figure 10.6  Clarke transformation. 

 

To enjoy better resolution of the variables in fixed point DSP, we transfer all 
variables to the Q15-based format. With this consideration, the maximum value of 
inputs and outputs can be (215-1) or in hexadecimal, the format shall be 7FFFh.  In 
this base, the variables can vary in the range 8000h-7FFFh.  This transformation 
converts balanced three-phase quantities into balanced two-phase quadrature 
quantities as shown in Fig. 10.7. 

 
 

Figure 10.7  Quantities in Clarke's transformation.  (Courtesy of Texas 

Instruments) 

 
As we previously noted, our calculations are based on the Q15 format . So all 

the coeficients are present in this representation. Then 1/√3 is represented by 
LDP #sqrt3inv ;sqrt3inv=(1/sqrt(3)) 
   ;=0.577350269 
SPLK  #018830,sqrt3inv   ;1/sqrt(3) (Q15) 
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Clarke’s transformation is implemented as follows: 
SETC SXM             ;Sign extension mode on 
LDP #clark_a ;clark_alfa = clark_a 
LACC clark_a  ;ACC = clark_a 
SACL clark_alfa ;clark_d = clark_a 
   ;clark_beta=(2*clark_b+clark_a)/ 
   ;sqrt(3) 
SFR                 ;ACC = clark_a/2 
ADD clark_b         ;ACC = clark_a/2 + clark_b 
SACL clk_temp        ;clk_temp = clark_a/2 + clark_b 
LT clk_temp        ;TREG = clark_a/2 + clark_b 
MPY sqrt3inv ;PREG=(clark_a/2+clark_b)* 
   ;(1/sqrt(3)) 
PAC             ;ACC=(clark_a/2+clark_b)* 
   ;(1/sqrt(3)) 
SFL             ;ACC=(clark_a+clark_b*2)* 
   ;(1/sqrt(3)) 
SACH clark_beta   ;clark_beta=(clark_a+clark_b*2  
   ;(1/sqrt(3)) 
SPM 0               ;SPM reset 
RET 

 

10.6.2 Inverse Clarke’s Transformation 

From (10.3), the inverse Clarke functions for a balanced system can be 
obtained as 
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 (10.21) 

This transformation converts balanced two-phase quadrature quantities into 
balanced three-phase quantities. The block diagram of the inverse Clarke 
transformation is shown in Fig. 10.8.  

 

 
Figure 10.8  Inverse Clark transformation block. 

 
In this block diagram, αf  and  are inputs and , , and  are outputs. 

Inputs and outputs are represented in Q15 format. Variation of quantities in the 
inverse Clark transformation is shown in Fig. 10.9. 

βf af bf cf
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Figure 10.9  Quantities in inverse Clarke's transformation.  (Courtesy of 

Texas Instruments) 
 
Implementation of the inverse Clarke transformation via assembly code is as 
follows 

I_CLARKE_INIT:    
LDP #half_sqrt3 ;Variables data page 
SPLK  #28377,half_sqrt3  ;Set constant sqrt(3)*0.5 in Q15  
   ;format 

RET 

I_CLARKE:    
LDP #f_clark_alpha ;Variables data page 
SPM 1            ;SPM set for Q15 multiplication  
SETC SXM  ;Sign extension mode on 
LACC f_clark_alpha ;ACC = f_alpha 
SACL f_clark_a ;f_a = f_alpha 
LT f_clark_beta ;TREG = f_clark_beta 
MPY half_sqrt3       ;PREG=f_clark_beta * half_sqrt3      
PAC                     ;ACC= f_clark_beta * half_sqrt3               

SUB f_clark_alpha,15 ;ACC=f_beta*half_sqrt3-f_alpha/2  
SACH f_clark_b            
PAC                    ;ACC high = f_beta*half_sqrt3  
NEG                      ;ACC high = - f_beta*half_sqrt3 
SUB f_clark_alpha,15       ;ACC high=-f_beta*half_sqrt3-  
   ;f_alpha/2 
SACH f_clark_c          ;f_c = - f_beta * half_sqrt3 –  
   ;f_alpha/2 
SPM 0              ;SPM reset 
CLRC SXM  ;Sign extension mode off 

RET 

 

10.6.3 Calculation of Sine/Cosine with Fast Table Direct Look-Up and Linear 

Interpolation 

To implement the Park and the inverse Park transforms, the sine and cosine 
functions need to be implemented. This method realizes the sine/cosine functions 
with a look-up table of 256 values for 360° of sine and cosine functions. The 

   

Copyright © 2004 CRC Press, LLC



     Clarke’s and Park’s Transformations 218

method includes linear interpolation with a fixed step table to provide a minimum 
harmonic distortion. This table is loaded in program memory. The sine value is 
presented in Q15 format with the range of -1<value<1. The first few rows of the 
look-up sine table are presented as follows: 

       ;SINVALUE  ; Index Angle  Sin(Angle) 

 ---------------- -------- -------- ------------ 

SINTAB_360   

 .word  0 ;   0  0  0.0000 

 .word  804     ;   1  1.41  0.0245 

       .word  1608 ;   2  2.81  0.0491 

        .word  2410 ;   3  4.22  0.0736 

        .word  3212 ;   4  5.63  0.0980 

 

The following assembly code is written to read values of sine from the sine 
Table in Q15 format: 

LACC theta_p, 9 ;Input angle in Q15 format and  
   ;left shifted by 15 
SACH t_ptr  ;Save high ACC to t_ptr (table  
   ;pointer) 
LACC #SINTAB_360 
ADD t_ptr 
TBLR sin_theta ;sin_theta = Sin(theta_p) in Q15 

 

Note that 0 < theta_p < 7FFFh   (i.e., equivalent to   0 < theta_p < 360 deg).  
The TBLR instruction transfers a word from a location in program memory to a 
data-memory location specified by the instruction. The program-memory address is 
defined by the low-order 16 bits of the accumulator. For this operation, a read from 
program memory is performed, followed by a write to data memory.  

To calculate the cosine values from the sine Table in Q15 format, we write the 
following code: 

LACC theta_p 
ADD #8192  ;add 90 deg, cos(A)=sin(A+900) 
AND #07FFFh  ;Force positive wrap-around 
SACL GPR0_park ;here 90 deg = 7FFFh/4 
LACC GPR0_park,9 
SACH t_ptr 
LACC #SINTAB_360 

 

10.6.4 Implementation of Park’s Transformation on LF2407 

As discussed in Section 10.5, with field-oriented control of motors, it is 
necessary to transform variables, i.e., currents and voltages, from a-b-c system to 
two-phase stationary reference frame, qs-ds, and from two-phase stationary 
reference frame qs-ds to arbitrary rotating reference frame with angular velocity of 
ω (q-d reference frame). The first transformation is dual to Clarke’s transformation 
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but the qs axis is in the direction of α−axis, and ds axis is in negative direction of 
β −axis. These two transformations are explained in the following sections. 

 

10.6.4.1 Transformation from 3-phase to 2-phase Stationary Reference 

Frame  )()( ss dqcba −→−−

This transformation transfers the three-phase stationary parameters, fa, fb, and fc 
from an a-b-c system to a two-phase orthogonal stationary reference frame. If we 
substitute θ=0 in (10.6) and assuming that the system is balanced, we get: 

  (10.23) a
s

q ff =

 )2(
3

1
ab

s
d fff +−=   (10.24) 
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Figure 10.11  Two-phase stationary transformation. 

 
Both input and output are represented in Q15 format with a block diagram of 

the transformation being shown in Fig. 10.11.  The developed code is similar to 
what was mentioned in Section 10.6.1.1. 

 

10.6.4.2 Transformation from the Stationary Reference Frame to the 

Arbitrary Rotary Reference Frame (   )() dqdq ss −→−

 This transformation converts vectors in a balanced two-phase orthogonal 
stationary system into an orthogonal rotary reference frame. The inputs are , 

, and θ, and the outputs are  and .  This is the transformation between the 
stationary reference frame and the arbitrary reference frame rotating with the 
angular velocity of ω.  If we substitute 

s
qf

s
df qf df

0=xθ  and  we obtain: θθ =y

  (10.25) 
s

d
s

qd

s
d

s
qq
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⋅+=

⋅−=

θθ

θθ

cos.sin

sin.cos

where θ is the angular displacement.   
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In this transformation, it is necessary to calculate θsin and θcos , where the 
method to calculate them was presented in a previous section.  In Fig. 10.12, the 
input and output of the Park transformation block has been shown. All the input and 
outputs are in the Q15 format and in the range of 8000h-7FFFh . 

fq
s

θ

fq

fd

fd
s

Park’s
Transformation

Q15

Q15

Q15
Q15

Q15

 

Figure 10.12  Park transformation block. 

 
The following code is written to implement Park’s transformation: 

SPM 1  ;SPM set for Q15 multiplication         
ZAC   ;Reset accumulator 
LT f_q_s     ;TREG = f_q_s 
MPY sin_theta    ;PREG = f_q_s * sin(theta) 
LTA f_d      ;ACC = f_q_s * sin(theta) and  
   ;TREG =f_q_s  
MPY cos_theta    ;PREG = f_d_s* cos_teta 
MPYA sin_theta    ;ACC=f_q_s*sin_teta+f_d_s* 
   ;cos_teta andPREG=f_q_s*sin_teta 
SACH park_D  ;f_d =f_q_s * cos_teta + f_d_s*  
   ;sin(theta)         
LACC #0           ;Clear ACC 
LT f_d_s    ;TREG = f_d_s 
MPYS cos_theta    ;ACC=- f_d_s* *sin(theta) and   
   ;PREG = f_q_s * cos(theta) 
APAC               ;ACC=- f_d_s*sin(theta) +f_q_s* 
   ;cos(theta) 
SACH f_q       ;fq = -f_d_s*sin(theta) +f_q_s*  
   ;cos(theta) 
SPM 0            ;SPM reset 

RET 

 

10.6.5 Transformation of the Arbitrary Rotating Reference Frame to the 

Stationary Reference Frame  )()( ss dqdq −→−

This transformation projects vectors in an orthogonal rotating reference frame 
into a two-phase orthogonal stationary frame.  From (10.15) we get: 

   (10.26) 
dq

s
d

dq
s

q

dff

fff

⋅+⋅−=

⋅+⋅=

θθ

θθ

cossin

sincos

In this transformation, θ is the angular displacement.  To transform variables to 
Park’s reference frame, it is necessary to calculate sinθ and cosθ.  Use the method 
presented in the previous section.  In Fig. 10.13, inputs and outputs of the inverse 
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Park transformation block are shown. The inputs are , , and df qf θ , and the 

outputs are  and .  All the inputs and outputs are in the Q15 format and in the 
range of 8000

αf βf

h-7FFFh . 

fq
s

fd
s

θ

fq

fd
Inverse Park’s
Transformation

Q15

Q15

Q15
Q15

Q15

 
Figure 10.13  Inverse Park’s transformation block. 

 

The following code is written to implement this transformation: 
SPM 1  ;SPM set for Q15 multiplication         
 ZAC  ;Reset accumulator 
 LT f_q     ;TREG = fq 
 MPY cos_theta    ;PREG = fq * cos(theta) 
 LTA f_d      ;ACC=fq*cos(theta) and TREG =fd  
 MPY sin_theta    ;PREG = fd * sin(theta) 
 MPYA sin_theta    ;ACC=fq*cos(theta)+fd*sin(theta)  
   ;and PREG=fd*sin(theta) 
 SACH f_q_s ;fd=fq*cos(theta)+fd*sin(theta)         
 LACC #0 ;Clear ACC 
 LT f_d ;TREG = fd 
 MPYS cos_theta ;ACC = -fd*sin_theta and  
   ;PREG = fd*cos_theta  
 APAC     
 SACH f_d_s   
 SPM 0 ;SPM reset 

 RET  

 

10.6.6 The 2-Phase to 3-Phase Transformation (  )() cbadq ss −−→−

This transformation transforms the variables from the stationary two-phase qs-
ds frame to the stationary a-b-c system. This system is also dual to the inverse 
Clarke transformation where the qs-axis is in the direction of the α axis and the ds-
axis is in the negative direction of β−axis. 

If we substitute θ=0 in (10.9) and assume a balanced system we get: 

  s
qa ff =

 
2
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ff
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=  (10.27) 
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The implemented code is similar to the inverse Clarke transformation which 
will not be repeated in here. 

 

10.7 Conclusion 

With FOC of synchronous and induction machines, it is desirable to reduce the 
complexity of the electric machine voltage equations. The transformation of 
machine variables to an orthogonal reference frame is beneficial for this purpose. 
Park’s and Clarke’s transformations, two revolutions in the field of electrical 
machines, were studied in depth in this chapter. These transformations and their 
inverses were implemented on the fixed point LF2407 DSP. 
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