Chapter 11

SPACE VECTOR PULSE WIDTH MODULATION

11.1 Introduction

In this chapter, the concept of space vector pulse width modulation (SVPWM) as applied to an induction motor will be introduced. An explanation of the DSP assembly code is needed to implement the control algorithm. Several key functional parts of the DSP code will be discussed.

Of all motors, the squirrel cage induction motor is the most widely used motor in the industry. This leading position results mainly from certain excellent features of the squirrel cage motor such as:

- Uncomplicated, rugged construction; this means low initial cost and high reliability.
- Good efficiency coupled with low maintenance costs, resulting in low overall operating costs.

Squirrel cage motors, like all induction machines, are asynchronous machines with speed depending upon applied frequency, pole number, and load torque. In order to use the poly-phase ac motor as an adjustable speed device, it is necessary to control and adjust the frequency of the three-phase voltages applied to its terminals. The operating speed of the motor is determined by the following relationship

$$
\begin{equation*}
N=\frac{120 \cdot f}{P}(1-s) \tag{11.1}
\end{equation*}
$$

where N is the shaft speed in rpm, f is the supplied frequency in Hz, P is the number of poles, and s is the operating slip.

A switching power converter can be used to control both the supplied voltage and frequency. Consequently, higher efficiency and performance can be achieved. The most common control principle for induction motors is the constant volts per hertz $(\mathrm{V} / \mathrm{Hz})$ principle, which will be explained in the next section.

11.2 Principle of Constant V / Hz Control for Induction Motors

For us to understand the V / Hz control, we will first assume that the voltage applied to a three-phase ac induction motor is sinusoidal, and neglect the voltage drop across the stator resistor. At steady state the machine terminal voltage is given by

$$
\begin{equation*}
\hat{V} \approx j \varpi \hat{\Lambda} \tag{11.2}
\end{equation*}
$$

or

$$
\hat{V} \approx \omega \hat{\Lambda}
$$

where \hat{V} and $\hat{\Lambda}$ are the phasors of stator voltage and stator flux, and V and Λ are their respective magnitudes.

$$
\begin{equation*}
\Lambda \approx \frac{V}{\varpi}=\frac{1}{2 \pi} \frac{V}{f} \tag{11.3}
\end{equation*}
$$

It follows that if the ratio V / f remains constant with the change of f, then Λ also remains constant and the torque is independent of the supply frequency.

In actual implementation, the ratio between the magnitude and frequency of the stator voltage is usually based on the rated values of these variables, also known as motor ratings. However, when the frequency and voltage are low, the voltage drop across the stator resistance cannot be neglected. At frequencies higher than the rated value, to avoid insulation break, the constant V / f principle has to be violated. The realistic control limits that are placed on the applied voltage and frequency are illustrated in Fig. 11.1.

Figure $11.1 \quad V / f$ limits on frequency and voltage.

11.3 Space Vector PWM Technique

Space Vector PWM (SVPWM) refers to a special technique of determining the switching sequence of the upper three power transistors of a three-phase voltage source inverter (VSI). It has been shown to generate less harmonic distortion in the output voltages or current in the windings of the motor load. SVPWM provides more efficient use of the dc bus voltage, in comparison with the direct sinusoidal modulation technique.

The structure of a typical three-phase voltage source inverter is shown in Fig. 11.2. The voltages, $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}$, and V_{c} are the output voltages applied to the windings of a motor. Q1 through Q6 are the six power transistors which are controlled by a, $a^{\prime}, b, b^{\prime}, c$ and c^{\prime} gating signals and shape the output voltages. When an upper transistor is switched on, i.e., when a, b, and c are 1 , the corresponding lower transistor is switched off, i.e., the corresponding a^{\prime}, b^{\prime} or c^{\prime} is 0 . The on and off
states of the upper transistors $\mathrm{Q} 1, \mathrm{Q} 3$, and Q 5 , or the states of a, b, and c are sufficient to evaluate the output voltage.

Figure $11.2 \quad$ Three-phase power inverter supplying an induction motor.

11.3.1 Switching Patterns and the Basic Space Vectors

There are eight possible combinations of on and off states for the three upper power transistors. The on and off states of the lower power transistors are opposite to the upper ones, so they are determined once the states of the upper transistors are known. The eight combinations are the derived output line-to-line and phase voltages in terms of DC supply voltage, $V_{d c}$, according to (11.4) and (11.5), which are shown in Table 11.1.

The relationship between the switching variable vector $[a, b, c]^{T}$ and the line-to-line voltage vector $\left[V_{a b}, V_{b c}, V_{c a}\right]^{T}$ is given by the following:

$$
\left[\begin{array}{l}
V_{a b} \tag{11.4}\\
V_{b c} \\
V_{c a}
\end{array}\right]=V_{d c}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

In addition, phase (line-to-neutral) output voltage vector $\left[V_{a}, V_{b}, V_{c}\right]^{T}$ is given by (11.5)

$$
\left[\begin{array}{l}
V_{a} \tag{11.5}\\
V_{b} \\
V_{c}
\end{array}\right]=\frac{1}{3} V_{d c}\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Table 11.1 Switching patterns and output voltages of a three-phase power inverter

\mathbf{a}	\mathbf{b}	\mathbf{c}	V_{a}	V_{b}	V_{c}	$V_{a b}$	$V_{b c}$	$V_{c a}$
0	0	0	0	0	0	0	0	0
1	0	0	$2 / 3$	$-1 / 3$	$-1 / 3$	1	0	-1
1	1	0	$1 / 3$	$1 / 3$	$-2 / 3$	0	1	-1
0	1	0	$-1 / 3$	$2 / 3$	$-1 / 3$	-1	1	0
0	1	1	$-2 / 3$	$1 / 3$	$1 / 3$	-1	0	1
0	0	1	$-1 / 3$	$-1 / 3$	$2 / 3$	0	-1	1
1	0	1	$1 / 3$	$-2 / 3$	$1 / 3$	1	-1	0
1	1	1	0	0	0	0	0	0

11.3.2 Expression of the Stator Voltages in the (d-q) Frame

Assuming q and d are the horizontal and vertical axes of the stator coordinate frame, the $d-q$ transformation given in (11.6) can transform a three-phase voltage vector into a vector in the $d-q$ coordinate frame. This vector represents the spatial vector sum of the three-phase voltage. The phase voltages corresponding to the eight combinations of switching patterns can be mapped into the $d-q$ plane by the same $d-q$ transformation as shown in Table 11.2. This mapping results in 6 non-zero vectors and 2 zero vectors. The non-zero vectors form the axes of a hexagonal as shown in Fig. 11.3. The angle between any two adjacent non-zero vectors is 60°. The 2 zero vectors are positioned at the origin and apply zero voltage to a motor. The group of the 8 vectors are referred to as the basic space vectors and are denoted by V_{0}, through V_{7}. The $d-q$ transformation can be applied to the reference a, b, and c voltages to obtain the reference $V_{\text {out }}$ in the $d-q$ plane as shown in Fig. 11.3.

$$
\left[\begin{array}{l}
V_{q} \tag{11.6}\\
V_{d}
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]
$$

Table 11.2 The eight switching states and corresponding d-q voltages.

\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{V}_{\mathbf{q}}$	$\mathbf{V}_{\mathbf{d}}$	\mathbf{V}_{dq}
0	0	0	0	0	$V_{0}=0$
0	0	1	$-\frac{1}{3} V_{d c}$	$\frac{1}{\sqrt{3}} V_{d c}$	$V_{1}=\frac{2}{3} V_{d c}$
0	1	0	$-\frac{1}{3} V_{d c}$	$-\frac{1}{\sqrt{3}} V_{d c}$	$V_{2}=\frac{2}{3} V_{d c}$
0	1	1	$-\frac{2}{3} V_{d c}$	0	$V_{3}=\frac{2}{3} V_{d c}$
1	0	0	$\frac{2}{3} V_{d c}$	0	$V_{4}=\frac{2}{3} V_{d c}$
1	0	1	$\frac{1}{3} V_{d c}$	$\frac{1}{\sqrt{3}} V_{d c}$	$V_{5}=\frac{2}{3} V_{d c}$
1	1	0	$\frac{1}{3} V_{d c}$	$-\frac{1}{\sqrt{3}} V_{d c}$	$V_{6}=\frac{2}{3} V_{d c}$
1	1	1	0	0	$V_{7}=0$

Figure 11.3 Space vector diagram.

11.3.3 Approximation of Output with Basic Space Vectors

The objective of the space vector PWM technique is to approximate the reference voltage vector $V_{\text {out }}$ by a combination of the eight switching patterns. One simple means of approximation is to require the average output voltage of the inverter (in small period T) to be the same as the average of $V_{\text {out }}$ in the same
period. This is shown in (11.7) for the output voltage in the Sector 0 , where T_{4} and T_{6} are the respective durations in time for which switching patterns are V_{4} and V_{6}.
$\frac{1}{T} \int_{n T}^{(n+1) T} V_{\text {out }} d t=\frac{1}{T}\left(T_{4} V_{4}+T_{6} V_{6}\right) \quad n=0,1,2, \cdots$, where $\quad T_{4}+T_{6} \leq T$
Assuming the PWM period, $T_{p w m}$, is small and the change of $V_{\text {out }}$ is relatively slow, from (11.7), we obtain
$\int_{n T_{P W M}}^{(n+1) T_{P W M}} V_{\text {out }} d t=T_{P W M} V_{\text {out }}=\left(T_{4} V_{4}+T_{6} V_{6}\right) \quad n=0,1,2, \cdots$, where $T_{4}+T_{6} \leq T_{P W M}$
Equation (11.8) shows that for every PWM period, the desired reference voltage $V_{\text {out }}$ can be approximated by having the power inverter in a switching pattern of V_{4} and V_{6} for T_{4} and T_{6} periods of time, respectively. Since the sum of T_{4} and T_{6} is less than or equal to $T_{p w m}$, the inverter needs to have a $0\left((000) V_{0}\right.$ or $(111) V_{7}$) pattern for the rest of the period. Therefore, (11.8) will then become

$$
\begin{equation*}
T_{P W M} V_{\text {out }}=T_{4} V_{4}+T_{6} V_{6}+T_{0}\left(V_{0} \text { or } V_{7}\right) \tag{11.9}
\end{equation*}
$$

where

$$
T_{1}+T_{2}+T_{0}=T_{p w m}
$$

The reference voltage vector $V_{\text {out }}$ is obtained by mapping the desired threephase output voltages to the d-q plane through the d-q transform. When the desired output voltages are in the form of three sinusoidal voltages with a 120° phase shift between them, $V_{\text {out }}$ becomes a vector rotating around the origin of the $d-q$ plane with a frequency corresponding to that of the desired three-phase voltages. The envelope of the hexagon formed by the basic space vectors, as shown in Fig. 11.3, is the locus of maximum $V_{\text {out }}$. Therefore, the magnitude of $V_{\text {out }}$ must be limited to the shortest radius of this envelope because $V_{\text {out }}$ is a rotating vector. This gives a maximum magnitude of $V_{d c} / \sqrt{2}$ for $V_{\text {out }}$. The maximum root mean square (rms) values of the fundamental line-to-line and line-to-neutral output voltages are $V_{d c} / \sqrt{2}$ and $V_{d c} / \sqrt{6}$. Notice that these values are $2 / \sqrt{3}$ times higher than what a standard sinusoidal PWM technique can generate.

An example of a symmetric space vector PWM waveform is shown in Fig. 11.4. It is assumed that the reference voltage $V_{\text {out }}$ lies in Sector 0 , which is bordered by vectors V_{4} and V_{6}.

Figure 11.4 A symmetric space vector PWM switching pattern.

11.3.4 Calculating the Time Periods of the Switching States

The output voltage $V_{\text {out }}$ can be in any one of Sector 0 to Sector 5. Equation (11.10) shows that for every PWM period, $V_{\text {out }}$ is approximated by switching between the two non-zero basic vectors that border the sector of the current output voltage $V_{\text {out }}$. For instance, if $V_{\text {out }}$ is in Sector 1, it can be approximated by switching the inverter between states V_{2} and V_{6} for periods of time T_{2} and T_{6}, respectively. Because the sum of T_{2} and T_{6} should be less than or equal to $T_{p w m}$, the inverter should remain in T_{0} or T_{7} for the rest of the period.

From (11.10), we can calculate the time durations T_{4} and T_{6}.

$$
\left[\begin{array}{l}
T_{4} \tag{11.10}\\
T_{6}
\end{array}\right]=T_{P W M}\left[\begin{array}{ll}
V_{4 q} & V_{6 q} \\
V_{4 d} & V_{6 d}
\end{array}\right]^{-1}\left[\begin{array}{l}
V_{\text {outq }} \\
V_{\text {outd }}
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
T_{4} \\
T_{6}
\end{array}\right]=T_{P W M} M_{0}\left[\begin{array}{c}
V_{\text {outq }} \\
V_{\text {outd }}
\end{array}\right]
$$

where M_{0} is the normalized decomposition matrix for sector 0 . By substituting the values of $V_{4 q}, V_{4 d}, V_{6 q}$, and $V_{6 d}$, we obtain

$$
\left[\begin{array}{c}
T_{4} \tag{11.11}\\
T_{6}
\end{array}\right]=T_{P W M}\left[\begin{array}{cc}
2 / 3 & 1 / 3 \\
0 & -1 / \sqrt{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
V_{\text {outq }} \\
V_{\text {outd }}
\end{array}\right]
$$

The matrix inverse can be calculated before program execution for each sector and then obtained via a look-up table during execution. Doing so ensures smooth operation because the calculation load on the DSP is reduced. This approach is useful when $V_{\text {out }}$ is given in the form of the vector $\left[\begin{array}{ll}V_{\text {outq }} & V_{\text {outd }}\end{array}\right]^{T}$. Table 11.3 shows the sector numbers and the associated normalized decomposition matrix.

Table $11.3 \quad$ Normalized decomposition matrix vs. sector.

Sector	Durations Calculated	Decomposition Matrix
0	T_{4} and T_{6}	$M_{0}=\left[\begin{array}{cc}\sqrt{3} / 2 & 1 / 2 \\ 0 & -1\end{array}\right]$
1	T_{2} and T_{6}	$M_{1}=\left[\begin{array}{cc\|}-\sqrt{3} / 2 & -1 / 2 \\ \sqrt{3} / 3 & -1 / 2\end{array}\right]$
2	T_{2} and T_{3}	$M_{2}=\left[\begin{array}{cc}0 & -1 \\ -\sqrt{3} / 3 & 1 / 2\end{array}\right]$
3	T_{1} and T_{3}	$M_{2}=\left[\begin{array}{cc}0 & 1 \\ -\sqrt{3} / 3 & -1 / 2\end{array}\right]$
4	T_{1} and T_{5}	$M_{4}=\left[\begin{array}{cc}-\sqrt{3} / 2 & 1 / 2 \\ \sqrt{3} / 3 & 1 / 2\end{array}\right]$
5	T_{5} and T_{4}	$M_{5}=\left[\begin{array}{cc}-\sqrt{3} / 2 & -1 / 2 \\ 0 & 1\end{array}\right]$

11.3.5 Finding the Sector Number

It is necessary to know in which sector the output voltage is located to determine the switching time periods and switching sequence. The following algorithm can be used if the reference output voltage is in the $a-b-c$ plane. If the output voltage is given in the $d-q$ plane, we must transform the vector to the a-b-c
plane before using the algorithm. In order to perform the transformation, first calculate the values of A, B, and C by using the following equations:

$$
\begin{align*}
& A=\operatorname{sig}\left(r e f_{1}-r e f_{2}\right) \\
& B=\operatorname{sig}\left(r e f_{2}-r e f_{3}\right) \tag{11.12}\\
& C=\operatorname{sig}\left(r e f_{3}-r e f_{1}\right)
\end{align*}
$$

where sig is the sign function, which is defined as

$$
\begin{array}{cc}
\operatorname{sig}(x)=1 & x>0 \\
\text { undef } & x=0 \\
-1 & x<0
\end{array}
$$

and $r e f_{1}, r e f_{2}$, and $r e f_{3}$ are the output a, b, and c voltages. Then, find the value of N from the following relationship

$$
\begin{equation*}
N=|A+2 B+4 C| \tag{11.13}
\end{equation*}
$$

Finally, we refer to Table 11.4 to map N to the sector of $V_{\text {out }}$.

Table 11.4 N vs. sector

\mathbf{N}	1	2	3	4	5	6
Sector	1	5	0	3	2	4

11.3.6 SVPWM Switching Pattern

The order of the non-zero vectors and the zero vectors in each PWM period must be determined. Different switching orders result in different waveform patterns. Figure 11.5 shows the waveform produced for each sector of a symmetric switching scheme. Each waveform and sector has the following properties:

- Each PWM channel switches twice per PWM period except when the duty cycle is 0 or 100%.
- There is a fixed switching order among the three PWM channels for each sector.
- Every PWM period starts and ends with V_{0}.
- The amount of V_{000} inserted is the same as that of V_{111} in each PWM period.

Figure 11.5 A symmetric space vector PWM switching pattern.

11.4 DSP Implementation

In this section, the space vector switching scheme discussed previously is implemented on a LF2407 DSP processor. The DSP-based algorithm is interrupt driven, meaning that the functionality of the code depends on a hardware interrupt, in this case the Timer 1 underflow interrupt. Figure 11.6 is a flowchart depicting the algorithm implemented on the LF2407 DSP processor.

Figure 11.6
Space vector PWM algorithm flowchart.

The major features of this DSP implementation are:

- 32-Bit integration to obtain the phase of the reference voltage vector
- Quarter mapping to calculate sine and cosine functions
- Sector-based look-up table for the decomposition matrix
- Sector-based look-up table for the channel toggling order or Action Control Register reload pattern

11.4.1 Algorithm Subroutines

As shown in Fig. 11.6, while the DSP algorithm waits for an interrupt to occur, the DSP will continue to execute the code in the main_loop routine until a Timer 1 underflow interrupt is generated by the event manager. The task of main_loop is to first obtain the magnitude of reference voltage vector Vout based on the constant V / Hz profile. After the reference voltage vector is determined, the watchdog timer is reset and the DSP is instructed to branch back to the beginning of main_loop, repeating the above process, provided that an interrupt has not occurred yet. The main_loop algorithm can be seen below.
; Start of background loop

```
main_loop LDP #4
    SPLK #debug_data,set_f ; Replace with debug data
```

f2omega LT set_f ; set f -> omega: D0
MPY f_omega ; D0*D10=D (10+1)
PAC ; product -> ACC: D11
SACH omega, $1 \quad$;-> set angular speed: D10
lacc omega
sub \#min_omega_ ; compare W with its lower limit
BGZ winlimit ; continue if within limit
splk \#min_omega_omega ; saturate if not winlimit
; Note the following implies constant v / f

omega2v	LT	omega	; set angular speed -> T: D10
	MPY	omega_v	; D10*D-9=D (1+1)
	PAC		; product -> ACC: D2
	SACH	set_v,1	; -> mag of ref voltage and -> D1
	lacc	set_v	
	sub	\#max_v_	; compare Uout w/ its upper limit
	BLEZ	uinuplim	; continue if within limit
	splk	\#min_v_,set_v	; saturate if not
	B	reset_wd	
uinuplim	LACC	set_v	
	SUB	\#min_v	; compare Uout with its lower limit
	BGEZ	reset_wd	; continue if within limit
	splk	\#min_v_,set_v	; saturate if not
reset_wd	LDP	\#WDKEY>>7	; Reset WD timer
	SPLK	\#wd_rst_1,WDKEY	
	SPLK	\#wd_rst_2,WDKEY	
	SPLK	\#0000000001101111b,	WDCR

B main_loop ; End of background loop

When a Timer underflow interrupt occurs, the DSP finishes its current instruction and branches to the interrupt service routine. In the interrupt service routine, tasks 1 through 5 are performed. Each task along with the corresponding code is shown below:

Obtain the phase (q) of Vout by integrating the command speed.

ldp	\#omega	; Integrate speed to get phase
LT	omega	; set W -> T: D10
MPY	t_sample	; D10*D-9=D(1+1)
PAC		; product -> ACC: D2
SFR		; -> D3
ADDH	theta_h	; D3+D3=D3 (32 bit)
ADDS	theta_1	
SACH	theta_h	; save
SACL	theta_1	
chk_lolim bend	chk_uplim, GEQ ; check upper limit if positive	
ADDH	theta_360	; D3+D3=D3, rollover if not
SACH	theta_h	; save
B	rnd_theta	
chk_uplim SUBH	theta_360	; D3-D3=D3 compare with 2*pi
bend	rest_theta,LEQ	; resume theta_h if within limit
SACH	theta_h	; rollover if not
B	rnd_theta	
rest_theta ADDH	theta_360	; resume theta high
rnd_theta ADD	\#1,15	; round up to upper 16 bits
SACH	theta_r	
; Quadrant mapping		
LACC	one	; assume theta (theta_h) is in
SPLK	\#-1,SS	; quadrant 1
SACL	SC	; $1=>$ SC, sign of COS (theta)
LACC	theta_r	
SACL	theta_m	; theta=>theta_m
SUB	theta_90	
BLEZ	E_Q	; jump to end if 90>=theta

; assume theta (theta_h) is in quadrant 2

SPLK	\#-1,SC	$;-1=>$ SC
LACC	theta_180	$;$
SUB	theta_r	$; 180$-theta
SACL	theta_m	$;=>$ theta_m
BGEZ	E_Q	$;$ jump to end if $180>=$ theta

; assume theta (theta_h) is in quadrant 3
SPLK \#1,SS ;-1 $=>$ SS

LACC theta_r
SUB theta_180 ; theta-180
SACL theta_m ; =>theta_m
LACC theta_270

SUB	theta_r
BGEZ	E_Q

; theta (theta_h) is in quadrant 4

SPLK	\#1,SC	$; 1=>$ SC
LACC	theta_360	
SUB	theta_r SACL	theta_m

Obtain the sine and cosine of q with quarter mapping and table look-up, and calculate the d-q component of Vout.

; \sin (theta), \cos (theta)			
E_Q	LT	theta_m	; D3. Find index
	MPY	theta_i	; D3*D6=D(9+1)
	PAC		; D10
	SACH	sin_indx	; D10
	LACC	sin_indx, 11	; r/s 5 by 1/s 11 -> integer (D15)
	SACH	sin_indx	; right shift 5 bits => D15
	LACC	sin_entry	; Look up sin
	ADD	sin_indx	
	TBLR	sin_theta	
	LACC	sin_end	
	SUB	sin_indx	
	TBLR	cos_theta	
	LT	SS	; Look up cos
	MPY	sin_theta	; modify sign: D15*D1=D(16+1)
	PAC		
	SACL	sin_theta	; left shift 16 bits and save: D1
	LT	SC	
	MPY	cos_theta	; modify sin: D15*D1 $=\mathrm{D}(16+1)$
	PAC		
	SACL	cos_theta	; left shift 16 bits and save: D1

Determine which sector Vout is in.

; Determine sector		
LT	theta_r	; D3
MPY	theta_s	; D3*D0 $=$ D4
PAC		
SACH	sector	
LACC	sector,5	; r/s 11 by 1/s 5

SACH sector ; right shift 11 bits

Decompose Vout to obtain T1, T2 and T0 as compare values.


```
; Calculate 0.5*C0 based on 0.5*C3*Tp=Tp*(1-0.5*C1-0.5*C2)
    LACC #t1_period_
    SUB cmp_1 ;
    SUB cmp_2 ; D15
    BGEZ cmpō_big0 ; continue if bigger than zero
    ZAC ; zero it if less than zero
cmp0_big0
    SACL cmp_0 ;
    LACC cmp_0,15 ; right shift 1b (by l/s 15b)
    SACH cmp_0 ;0.25*C0*Tp
```

Determine the switching sequence and load the obtained compare values into corresponding compare registers.

```
; Determine channel toggling sequence and load compare registers
\begin{tabular}{|c|c|c|}
\hline LACC & \#first & ; \\
\hline ADD & sector & ; point to entry in look up table \\
\hline TBLR & first_tog & ; get 1st-to-toggle channel \\
\hline LAR & AR0,first_tog & ; point to the channel \\
\hline LACC & cmp_0 & \\
\hline SACL & * & ; cmp_0 \(=>\) the channel \\
\hline LACC & \#second & ; \\
\hline ADD & sector & ; point to entry in look up table \\
\hline TBLR & sec_tog & ; get 2nd-to-toggle channel \\
\hline LAR & AR0,sec_tog & ; point to the channel \\
\hline LACC & cmp_0 & \\
\hline ADD & cmp_1 & ; cmp_0+cmp_1 \\
\hline SACL & * & ; => the channel \\
\hline
\end{tabular}
LACC #CMPR3
SUB first_tog
ADD #CMPR2
SUB sec_tog
ADD #CMPR1
SACL temp ; get 3rd-to-toggle channel
LAR AR0,temp ; point to the channel
LACC cmp_0
ADD cmp_1
ADD cmp_2 ;cmp_0+cmp_1+cmp_2
SACL * ; => the channel
RET ; return
```

The code shown above composes the functional parts of the LF2407 assembly code which implements the SVPWM switching scheme.

11.4.2 Verification of the SVPWM Algorithm and Conclusions

The space vector PWM algorithm can be verified by probing the filtered PWM outputs of LF2407 using a very simple low-pass filter as shown in Fig. 11.7 and by viewing the resultant signal on a oscilloscope.

Figure 11.7 Low pass filter for filtering the LF2407 PWM outputs.
The output of the low-pass filter is illustrated by the oscilloscope screenshot in Fig. 11.8. It shows the three-phase voltages and the corresponding line-to-line voltage for an 11 Hz waveform. The fundamental frequency and the third harmonic, which is inherently generated by the space vector method, are clearly shown. As expected, the three-phase wave forms are shifted from one another by 120 degrees.

Figure 11.8 Top to bottom: the waveforms of filtered SVPWM outputs, phase voltages and line-to-line voltage (frequency $=11 \mathrm{~Hz}$).

This chapter presented the concept of constant V / Hz control of induction motors using the SVPWM. The theory of both the V / Hz control and the space vector PWM was discussed. The theoretical analysis first discussed has been supported by the implementation of the SVPWM algorithm via the LF2407 DSP. The output results verify the validity of both the theory and the DSP implementation.

References

1. H.A. Toliyat, ELEN689 Class Notes, Spring 2002.
2. TI application note, "AC Induction Motor Control Using Constant V/Hz Principle/Space Vector PWM- ‘C240 (Rev. A) (SPRA284A).
