
1 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

UNIT 3

 MOTOR CONTROL SIGNAL PROCESSORS

3.1 INTRODUCTION

The Texas Instruments TMS320LF2407 DSP Controller (referred to as the LF2407 in

this text) is a programmable digital controller with a C2xx DSP central processing unit (CPU) as

the core processor. The LF2407 contains the DSP core processor and useful peripherals

integrated onto a single piece of silicon. The LF2407 combines the powerful CPU with on-chip

memory and peripherals. With the DSP core and control-oriented peripherals integrated into a

single chip, users can design very compact and cost-effective digital control systems.

The LF2407 DSP controller offers 40 million instructions per second (MIPS)

performance. This high processing speed of the C2xx CPU allows users to compute

parameters in real time rather than look up approximations from tables stored in memory. This

fast performance is well suited for processing control parameters in applications such as notch

filters or sensor less motor control algorithms where a large amount of calculations must be

computed quickly.

While the “brain” of the LF2407 DSP is the C2xx core, the LF2407 contains several

control-orientated peripherals onboard (see Fig. 3.1). The peripherals on the LF2407 make

virtually any digital control requirement possible. Their applications range from analog to digital

conversion to pulse width modulation (PWM) generation. Communication peripherals make

possible the communication with external peripherals, personal computers, or other DSP

processors. Below is a brief listing of the different peripherals onboard the LF2407 followed by a

graphical layout depicted in Fig. 3.1.

The LF2407 peripheral set includes:

• Two Event Managers (A and B)

• General Purpose (GP) timers

• PWM generators for digital motor control

• Analog-to-digital converter

• Controller Area Network (CAN) interface

2 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

• Serial Peripheral Interface (SPI) – synchronous serial port

• Serial Communications Interface (SCI) – asynchronous serial port

• General-Purpose bi-directional digital I/O (GPIO) pins

• Watchdog Timer (“time-out” DSP reset device for system integrity)

Figure 3.1 Graphical overview of DSP core and peripherals on the LF2407.

3.2 Brief Introduction to Peripherals

The following peripherals are those that are integrated onto the LF2407 chip. Refer to

Fig. 1.1 to view the pin-out associated with each peripheral.

3 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Event Managers (EVA, EVB)

There are two Event Managers on the LF2407, the EVA and EVB. The Event Manager is

the most important peripheral in digital motor control. It contains the necessary functions

needed to control electromechanical devices. Each EV is composed of functional “blocks”

including timers, comparators, and capture units for triggering on an event, PWM logic

circuits, quadrature-encoder–pulse (QEP) circuits, and interrupt logic.

The Analog-to-Digital Converter (ADC)

The ADC on the LF2407 is used whenever an external analog signal needs to be

sampled and converted to a digital number. Examples of ADC applications range from

sampling a control signal for use in a digital notch filtering algorithm or using the ADC in a

control feedback loop to monitor motor performance. Additionally, the ADC is useful in motor

control applications because it allows for current sensing using a shunt resistor instead of an

expensive current sensor.

The Control Area Network (CAN) Module

While the CAN module will not be covered in this text, it is a useful peripheral for

specific applications of the LF2407. The CAN module is used for multi-master serial

communication between external hardware. The CAN bus has a high level of data integrity

and is ideal for operation in noisy environments such as in an automobile, or industrial

environments that require reliable communication and data integrity.

Serial Peripheral Interface (SPI) and Serial Communications Interface (SCI)

The SPI is a high-speed synchronous communication port that is mainly used for

communicating between the DSP and external peripherals or another DSP device. Typical

uses of the SPI include communication with external shift registers, display drivers, or ADCs.

The SCI is an asynchronous communication port that supports asynchronous serial (UART)

digital communication between the CPU and other asynchronous peripherals that use the

standard NRZ (non-return-to-zero) format. It is useful in communication between external

devices and the DSP. Since these communication peripherals are not directly related to motion

control applications, they will not be discussed further in this text.

4 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Watchdog Timer (WD)

The Watchdog timer (WD) peripheral monitors software and hardware operations and

asserts a system reset when its internal counter overflows. The WD timer (when enabled) will

count for a specific amount of time. It is necessary for the user’s software to reset the WD

timer periodically so that an unwanted reset does not occur. If for some reason there is a

CPU disruption, the watchdog will generate a system reset. For example, if the software enters

an endless loop or if the CPU becomes temporarily disrupted, the WD timer will overflow and a

DSP reset will occur, which will cause the DSP program to branch to its initial starting point.

Most error conditions that temporarily disrupt chip operation and inhibit proper CPU function

can be cleared by the WD function. In this way, the WD increases the reliability of the CPU, thus

ensuring system integrity.

General Purpose Bi-Directional Digital I/O (GPIO) Pins

Since there are only a finite number of pins available on the LF2407 device, many of the

pins are multiplexed to either their primary function or the secondary GPIO function. In

most cases, a pin’s second function will be as a general-purpose input/output pin. The GPIO

capability of the LF2407 is very useful as a means of controlling the functionality of pins and

also provides another method to input or output data to and from the device. Nine 16-bit control

registers control all I/O and shared pins. There are two types of these registers:

• I/O MUX Control Registers (MCRx) – Used to control the multiplexer selection that

Chooses between the primary function of a pin or the general-purpose I/O function.

• Data and Direction Control Registers (PxDATDIR) – Used to control the data and data

 Direction of bi-directional I/O pins.

Phase Locked Loop (PLL) Clock Module

The phase locked loop (PLL) module is basically an input clock multiplier that allows

the user to control the input clocking frequency to the DSP core. External to the LF2407, a

clock reference (can oscillator/crystal) is generated. This signal is fed into the LF2407 and is

multiplied or divided by the PLL. This new (higher or lower frequency) clock signal is then

used to clock the DSP core. The LF2407’s PLL allows the user to select a multiplication

factor ranging from 0.5X to 4X that of the external clock signal. The default value of the PLL

is 4X.

5 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Memory Allocation Spaces

The LF2407 DSP Controller has three different allocations of memory it can use: Data,

Program, and I/O memory space. Data space is used for program calculations, look-up

tables, and any other memory used by an algorithm. Data memory can be in the form of the on-

chip random access memory (RAM) or external RAM. Program memory is the location of user’s

program code. Program memory on the LF2407 is either mapped to the off-chip RAM

(MP/MC- pin =1) or to the on-chip flash memory (MP/MC- = 0), depending on the logic value

of the MP/MC-pin.

I/O space is not really memory but a virtual memory address used to output data to

peripherals external to the LF2407. For example, the digital-to-analog converter (DAC) on the

Spectrum Digital
TM

evaluation module is accessed with I/O memory. If one desires to output

data to the DAC, the data is simply sent to the configured address of I/O space with the “OUT”

command. This process is similar to writing to data memory except that the OUT command is

used and the data is copied to and outputted on the DAC instead of being stored in memory.

3.3 Types of Physical Memory

Random Access Memory (RAM)

The LF2407 has 544 words of 16 bits each in the on-chip DARAM. These 544 words are

partitioned into three blocks: B0, B1, and B2. Blocks B1 and B2 are allocated for use only as

data memory. Memory block B0 is different than B1 and B2. This memory block is normally

configured as Data Memory, and hence primarily used to hold data, but in the case of the B0

block, it can also be configured as Program Memory. B0 memory can be configured as

program or data memory depending on the value of the core level “CNF” bit.

• (CNF=0) maps B0 to data memory.

• (CNF=1) maps B0 to program memory.

The LF2407 also has 2K of single-access RAM (SARAM). The addresses associated

with the SARAM can be used for both data memory and program memory, and are software

configurable to the internal SARAM or external memory.

6 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Non-Volatile Flash Memory

The LF2407 contains 32K of on-chip flash memory that can be mapped to program space

if the MP/MC-pin is made logic 0 (tied to ground). The flash memory provides a permanent

location to store code that is unaffected by cutting power to the device. The flash memory can be

electronically programmed and erased many times to allow for code development. Usually, the

external RAM on the LF2407 Evaluation Module (EVM) board is used instead of the flash for

code development due to the fact that a separate “flash programming” routine must be performed

to flash code into the flash memory. The on-chip flash is normally used in situations where the

DSP program needs to be tested where a JTAG connection is not practical or where the DSP

needs to be tested as a “stand-alone” device. For example, if a LF2407 was used to develop a

DSP control solution to an automobile braking system, it would be somewhat impractical to have

a DSP/JTAG/PC interface in a car that is undergoing performance testing.

3.4 Introduction to the C2xx DSP Core and Code Generation

The heart of the LF2407 DSP Controller is the C2xx DSP core. This core is a 16-bit fixed

point processor, meaning that it works with 16-bit binary numbers. One can think of the C2xx as

the central processor in a personal computer. The LF2407 DSP consists of the C2xx DSP core

plus many peripherals such as Event Managers, ADC, etc., all integrated onto one single chip.

3.5 The Components of the C2xx DSP Core

The DSP core (like all microprocessors) consists of several subcomponents necessary to

perform arithmetic operations on 16-bit binary numbers. The following is a list of the multiple

subcomponents found in the C2xx core which we will discuss further:

• A 32-bit central arithmetic logic unit (CALU)

• A 32-bit accumulator (used frequently in programs)

• Input and output data-scaling shifters for the CALU

• A (16-bit by 16-bit) multiplier

• A product-scaling shifter

• Eight auxiliary registers (AR0 – AR7) and an auxiliary register arithmetic unit

(ARAU)

Each of the above components is either accessed directly by the user code or is indirectly

used during the execution of an assembly command.

7 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Central Arithmetic Logic Unit (CALU)

The C2xx performs 2s-complement arithmetic using the 32-bit CALU. The CALU uses

16-bit words taken from data memory, derived from an immediate instruction, or from the 32-

bit multiplier result. In addition to arithmetic operations, the CALU can perform Boolean

operations. The CALU is somewhat transparent to the user. For example, if an arithmetic

command is used, the user only needs to write the command and later read the output from the

appropriate register. In this sense, the CALU is “transparent” in that it is not accessed directly by

the user.

Accumulator

The accumulator stores the output from the CALU and also serves as another input to the CALU

(many arithmetic commands perform operations on numbers that are currently stored in the

accumulator; versus other memory locations). The accumulator is 32 bits wide and is divided

into two sections, each consisting of 16 bits. The high-order bits consist of bits 31 through 16,

and the low-order bits are made up of bits 15 through 0. Assembly language instructions are

provided for storing the high- and low-order accumulator words to data memory. In most cases,

the accumulator is written to and read from directly by the user code via assembly commands. In

some instances, the accumulator is also transparent to the user (similar to the CALU operation in

that it is accessed “behind the scenes”).

Scaling Shifters

The C2xx has three 32-bit shifters that allow for scaling, bit extraction, extended arithmetic, and

overflow-prevention operations. The scaling shifters make possible commands that shift data left

or right. Like the CALU, the operation of the scaling shifters is “transparent” to the user. For

example, the user needs only to use a shift command, and observe the result. Any one of the

three shifters could be used by the C2xx depending on the specific instruction entered. The

following is a description of the three shifters:

• Input data-scaling shifter (input shifter): This shifter left-shifts 16-bit input data by 0 to 16

bits to align the data to the 32-bit input of the CALU. For example, when the user uses a

command such as “ADD 300h, 5”, the input shifter is responsible for first shifting the data in

memory address “300h” to the left by five places before it is added to the contents of the

accumulator.

8 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

• Output data-scaling shifter (output shifter): This shifter left-shifts data from the accumulator

by 0 to 7 bits before the output is stored to data memory. The content of the accumulator

remains unchanged. For example, when the user uses a command such as “SACL 300h, 4”,

the output shifter is responsible for first shifting the contents of the accumulator to the left by

four places before it is stored to the memory address “300h”.

• Product-scaling shifter (product shifter): The product register (PREG) receives the output

of the multiplier. The product shifter shifts the output of the PREG before that output is sent

to the input of the CALU. The product shifter has four product shift modes (no shift, left shift

by one bit, left shift by four bits, and right shift by six bits), which are useful for performing

multiply/accumulate operations, fractional arithmetic, or justifying fractional products.

Multiplier

The multiplier performs 16-bit, 2s-complement multiplication and creates a 32-bit result.

In conjunction with the multiplier, the C2xx uses the 16-bit temporary register (TREG) and the

32-bit product register (PREG).

The operation of the multiplier is not as “transparent” as the CALU or shifters. The

TREG always needs to be loaded with one of the numbers that are to be multiplied. Other than

this prerequisite, the multiplication commands do not require any more actions from the user

code. The output of the multiply is stored in the PREG, which can later be read by the user code.

Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect addressing to

access data memory (more on indirect addressing will be covered later along with assembly

programming). Eight auxiliary registers (AR0 through AR7) support the ARAU, each of which

can be loaded with a 16-bit value from data memory or directly from an instruction. Each

auxiliary register value can also be stored in data memory. The auxiliary registers are mainly

used as “pointers” to data memory locations to more easily facilitate looping or repeating

algorithms. They are directly written to by the user code and are automatically incremented or

decremented by particular assembly instructions during a looping or repeating operation. The

auxiliary register pointer (ARP) embedded in status register ST0 references the auxiliary register.

The status registers (ST0, ST1) are core level registers where values such as the Data Page (DP)

and ARP located.

9 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

3.6 System Configuration Registers

The System Control and Status Registers (SCSR1, SCSR2) are used to configure or

display fundamental settings of the LF2407. For example, these fundamental settings include the

clock speed (clock pre-scale setting) of the LF2407, which peripherals are enabled,

microprocessor/microcontroller mode, etc. Bits are controlled by writing to the corresponding

data memory address or the logic level on an external pin as with the

microprocessor/microcontroller (MP/MC) select bit. The bit descriptions of these two registers

(mapped to data memory) are listed below.

System Control and Status Register 1 (SCSR1) — Address 07018h

Bit 15 Reserved

Bit 14 CLKSRC. CLKOUT pin source select

0 CLKOUT pin has CPU Clock (40 MHz on a 40-MHz device) as the output

1 CLKOUT pin has Watchdog clock as the output

Bits 13–12 LPM (1:0). Low-power mode select

These bits indicate which low-power mode is entered when the CPU executes the IDLE

instruction. Description of the low-power modes:

10 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Bits 11–9

PLL Clock prescale select. These bits select the PLL multiplication factor for the input clock.

Bit 8 Reserved

Bit 7 ADC CLKEN. ADC module clock enable control bit.

0 Clock to module is disabled (i.e., shut down to conserve power).

1 Clock to module is enabled and running normally.

Bit 6 SCI CLKEN. SCI module clock enable control bit.

0 Clock to module is disabled (i.e., shut down to conserve power).

1 Clock to module is enabled and running normally.

Bit 5 SPI CLKEN. SPI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 4 CAN CLKEN. CAN module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 3 EVB CLKEN. EVB module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 2 EVA CLKEN. EVA module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Note: In order to modify/read the register contents of any peripheral, the clock to that peripheral

must be enabled by writing a 1 to the appropriate bit.

11 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Bit 1 Reserved

Bit 0 ILLADR. Illegal Address detect bit

If an illegal address has occurred, this bit will be set. It is up to software to clear this bit

following an illegal address detects. This bit is cleared by writing a 1 to it and should be cleared

as part of the initialization sequence. Note: An illegal address will cause a Non-Mask able

Interrupt (NMI).

System Control and Status Register 2 (SCSR2) — Address 07019h

Bits 15–7 Reserved. Writes have no effect; reads are undefined

Bit 6 Input Qualifier Clocks.

An input-qualifier circuitry qualifies the input signal to the CAP1–6, XINT1/2,

ADCSOC, and PDPINTA/B pins in the 240xA devices. The I/O functions of these pins do not

use the input-qualifier circuitry. The state of the internal input signal will change only after the

pin is held high/low for 6 (or 12) clock edges. This ensures that a glitch smaller than (or equal to)

5 (or 11) CLKOUT cycles wide will not change the internal pin input state. The user must hold

the pin high/low for 6 (or 12) cycles to ensure that the device will see the level change. This bit

determines the width of the glitches (in number of internal clock cycles) that will be blocked.

Note that the internal clock is not the same as CLKOUT, although its frequency is the same as

CLKOUT.

0 The input-qualifier circuitry blocks glitches up to 5 clock cycles long

1 The input-qualifier circuitry blocks glitches up to 11 clock cycles long

Note: This bit is applicable only for the 240xA devices, not for the 240x devices because they

lack an input-qualifier circuitry.

12 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Bit 5 Watchdog Override. (WD protect bit)

After RESET, this bit gives the user the ability to disable the WD function through

software (by setting the WDDIS bit = 1 in the WDCR). This bit is a clear-only bit and defaults to

a 1 after reset.

Note: This bit is cleared by writing a 1 to it.

0 Protects the WD from being disabled by software. This bit cannot be set to 1 by

software. It is a clear-only bit, cleared by writing a 1.

1 This is the default reset value and allows the user to disable the WD through the

WDDIS bit in the WDCR. Once cleared, however, this bit can no longer be set to 1 by software,

thereby protecting the integrity of the WD timer.

Bit 4 XMIF Hi-Z Control

This bit controls the state of the external memory interface (XMIF) signals.

0 XMIF signals in normal driven mode; i.e., not Hi-Z (high impedance).

1 All XMIF signals are forced to Hi-Z state.

Bit 3 Boot Enable

This bit reflects the state of the BOOT_EN / XF pin at the time of reset. After reset and device

has “booted up”, this bit can be changed in software to re-enable Flash memory visibility or

return to active Boot ROM.

0 Enable Boot ROM — Address space 0000 — 00FF is now occupied by the on-

chip Boot ROM Block. Flash memory is totally disabled in this mode. Note: There is no on-chip

boot ROM in ROM devices (i.e., LC240xA)

1 Disable Boot ROM — Program address space 0000 — 7FFF is mapped to on-

chip Flash memory in the case of LF2407A and LF2406A. In the case of LF2402A, addresses

0000 – 1FFF are mapped

Bit 2 Microprocessor/Microcontroller Select

This bit reflects the state of the MP/MC pin at time of reset. After reset, this bit can be changed

in software to allow dynamic mapping of memory on and off chip.

0 Set to Microcontroller mode — Program Address range 0000 — 7FFF is mapped

internally (i.e., Flash)

1 Set to Microprocessor mode — Program Address range 0000 — 7FFF is mapped

externally (i.e., customer provides external memory device.)

13 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Bits 1–0 SARAM Program/Data Space Select

DON PON SARAM status

0 0 SARAM not mapped (disabled), address space allocated to external memory

0 1 SARAM mapped internally to Program space

1 0 SARAM mapped internally to Data space

1 1 SARAM block mapped internally to both Data and Program spaces.

This is the default or reset value

3.7 Memory Addressing Modes

There are three basic memory addressing modes used by the C2xx instruction set. The three

modes are:

• Immediate addressing mode (does not actually access memory)

• Direct addressing mode

• Indirect addressing mode

3.7.1 Immediate Addressing Mode

In the immediate addressing mode, the instruction contains a constant to be manipulated by the

instruction. Even though the name “immediate addressing” suggests that a memory location is

accessed, immediate addressing is simply dealing with a user-specified constant which is usually

included in the assembly command syntax. The “#” sign indicates that the value is an immediate

address (just a constant). The two types of immediate addressing modes are:

Short-immediate addressing. The instructions that use short-immediate addressing have an 8-

bit, 9-bit, or 13-bit constant as the operand.

For example, the instruction:

LACL #44h ; loads lower bits of accumulator with

; Eight-bit constant (44h in this case)

Note: The LACL command will work only with a short 8-bit constant. If you want to load a long

16-bit constant, then use the LACC command.

Long-immediate addressing. Instructions that use long-immediate addressing have a 16-bit

constant as an operand. This 16-bit value can be used as an absolute constant or as a 2s-

complement value.

For example, the instruction:

LACC #4444h ; loads accumulator with up to a 16-bit

14 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

; Constant (4444h in this case)

If you need to use registers or access locations in data memory, you must use either direct or

indirect addressing.

3.7.2 Direct Addressing Mode

In direct addressing, data memory is first addressed in blocks of 128 words called data

pages. The entire 64K of data memory consists of 512 DPs labeled 0 through 511, as shown in

the Fig. 3.2. The current DP is determined by the value in the 9-bit DP pointer in status register

ST0. For example, if the DP value is “0 0000 0000”, the current DP is 0. If the DP value is “0

0000 0010”, the current data page is 2. The DP of a particular memory address can be found

easily by dividing the address (in hexadecimal) by 80h.

For example: For the data memory address 0300h, 300h/80h = 6h so the DP pointer is 6h.

Likewise, the DP pointer for 200h is 4h.

Figure 3.2 Data pages and corresponding memory ranges.

In addition to the DP, the DSP must know the particular word being referenced on that

page. This is determined by a 7-bit offset. The 7-bit offset is simply the 7 least significant bits

(LSBs) of the memory address. The DP and the offset make up the 16-bit memory address (see

Fig. 3.3).

15 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Figure 3.3 Data page and offset make up a 16-bit memory address.

When you use direct addressing, the processor uses the 9 DP bits and the 7 LSBs of the

instruction to obtain the true memory address. The following steps should be followed when

using direct addressing:

1 Set the DP. Load the appropriate value (from 0 to 511 in decimal or 0-1FF in hex) into

the DP. The easiest way to do this is with the LDP instruction. The LDP instruction loads

the DP directly to the ST0 register without affecting any other bits of the ST0.

LDP #0E1h ; sets the data page pointer to E1h

Or

LDP #225 ; sets the data page pointer to 225 decimal

; Which is E1 in hexadecimal

2 Specify the offset. For example, if you want the ADD instruction to use the value at the

second address of the current data page, you would write: ADD 1h

If the data page points to 300h, then the above instruction will add the contents of 301h to the

accumulator

Note: You do not have to set the data page prior to every instruction that uses direct

addressing. If all the instructions in a block of code access the same data page, you can simply

load the DP before the block. However, if various data pages are being accessed throughout the

block of code be sure the DP is changed accordingly.

Examples of Direct Addressing

In Example 1, the first instruction loads the DP with 0 0000 01002 to set the current data

page to 4. The ADD instruction then references a data memory address that is generated as

16 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

shown following the program code. Before the ADD instruction is executed, the opcode is

loaded into the instruction register. Together, the DP and the seven LSBs of the instruction

register form the complete 16-bit address, 0000 0010 0000 10012 (0209h).

In Example 2, the ADD instruction references a data memory address that is generated as

shown following the program code. For any instruction that performs a shift of 16, the shift value

is not embedded directly in the instruction word; instead, all eight MSBs contain an opcode that

not only indicates the instruction type, but also a shift of 16. The eight MSBs of the instruction

word indicate an ADD with a shift of 16.

Example 1 Using Direct Addressing with ADD (Shift of 0 to 15)

Example 2 Using Direct Addressing with ADD (Shift of 16)

17 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

In Example 3, the ADDC instruction references a data memory address that is generated

as shown following the program code. You should note that if an instruction does not perform

shifts (such as the ADDC instruction), all eight MSBs of the instruction contain the opcode for

the instruction type.

Example 3 Using Direct Addressing with ADDC

18 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

3.7.3 Indirect Addressing Mode

Indirect addressing is a powerful way of addressing data memory. Indirect addressing

mode is not dependent on the current data page as is direct addressing. Instead, when using

indirect addressing you load the memory space that you would like to access into one of the

auxiliary registers (ARx). The current auxiliary register acts as a pointer that points to a specific

memory address.

The register pointed to by the ARP is referred to as the current auxiliary register or

current AR. To select a specific auxiliary register, load the 3-bit auxiliary register pointer (ARP)

with a value from 0 to 7. The ARP can be loaded with the MAR instruction or by the LARP

instruction. An ARP value can also be loaded by using the ARx operand after any instruction

that supports indirect addressing as seen below.

Example of using MAR:

ADD *, AR1 ; Adds using current *, then makes AR1 the

; New current AR for future uses

Example of using LARP

LARP #2 ; this will make AR2 the current AR

The C2xx provides four types of indirect addressing options:

• No increment or decrement. The instruction uses the content of the current auxiliary

register as the data memory addresses but neither increments nor decrements the content

of the current auxiliary register.

• Increment or decrement by 1. The instruction uses the content of the current auxiliary

register as the data memory address and then increments or decrements the content of the

current auxiliary register by one.

• Increment or decrement by an index amount. The value in AR0 is the index amount.

The instruction uses the content of the current auxiliary register as the data memory

address and then increments or decrements the content of the current auxiliary register by

the index amount.

• Increment or decrement by an index amount using reverse carry. The value in AR0 i

the index amount. After the instruction uses the content of the current auxiliary register as

the data memory address, that content is incremented or decremented by the index

19 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

amount. The addition and subtraction process is accomplished with the carry propagation

reversed and is useful in fast Fourier transforms algorithms.

Table 3.1 displays the various operands that are available for use with instructions while using

indirect addressing mode.

Table 3.1 Indirect addressing operands.

Examples of Indirect Addressing

Example 1 illustrates how the instruction register is loaded with the value shown when the ADD

instruction is fetched from program memory.

Example 1. Indirect Addressing—No Increment or Decrement

20 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Example 2, illustrates how the instruction register is loaded with the value shown when the ADD

instruction is fetched from program memory.

Example 2. Indirect Addressing—Increment by 1

Example 3. Indirect Addressing—Decrement by 1

Example 4. Indirect Addressing—Increment by Index Amount

Example 5. Indirect Addressing—Decrement by Index Amount

21 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

3.8 Assembly Programming Using the C2xx DSP Instruction Set

The complete detailed instruction set for the C2xx DSP core can be found in the Texas

Instruments TMS320F/C24x DSP Controllers Reference Guide: CPU and Instruction Set;

Literature Number: SPRU160C. This reference guide contains a complete descriptive listing on

syntax, operands, binary opcode, instruction execution order, status bits affected by the

instruction, number of memory words required to store the instruction, and clock-cycles used by

the instruction. The Texas Instruments documentation on the assembly instruction set is very

well written. Each assembly instruction has a complete explanation of the instruction, all

optional operands, and several examples of the instructions used. Since including the instruction

set and complete documentation would make this book excessively long, we will assume the

reader has access to the documentation referred to above.

We will therefore focus on developing code, not the instruction set itself. Each command starts

with the basic assembly instruction. Each command supports specific addressing modes and

options. For example, the ADD command will work with direct, indirect, and immediate

addressing. In addition to the basic command, many instructions have additional options that

may be used with the instruction. For example, the ADD command supports left shifting of the

data before it is added to the accumulator.

The following is the instruction syntax for the ADD command:

ADD dma [, shift] ; Direct addressing

ADD dma, 16 ; Direct with left shift of 16

ADD ind [, shift [, ARn]] ; Indirect addressing

ADD ind, 16 [, ARn] ; Indirect with left shift of 16

ADD #k ; short immediate addressing

ADD #lk [, shift] ; Long immediate addressing

The following is a list of the various notations used in C2xx syntax examples:

Italics Italic symbols in instruction syntax represent variables.

Example:

LACC dma, you can use several ways to address the dma (data memory address).

LACC *

Or

LACC 200h

22 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

Or

LACC v ; where “v” is any variable assigned to data memory

Where *, 200h, and v are the data memory addresses

Boldface Characters Boldface characters must be included in the syntax.

Example:

LAR dma, 16 ; direct addressing with left shift of 16

LAR AR1, 60h, 16 ; load auxiliary AR1 register with the memory contents of 60h that

was left shifted 16 bits

Example:

LACC dma, [shift] ; optional left shift from 0, 15; defaults to 0

LACC main_counter, 8 ; shifts contents of the variable “main_counter” data 8 places to

the left before loading accumulator

[] An optional operand may be placed in the placed here.

Example:

LACC ind [, shift [, AR n]_] Indirect addressing

LACC * ; load Accum. W/contents of the memory

; Location pointed to by the current AR.

LACC *, 5 ; load Accum. With the contents of the memory

; Location pointed to by the current AR after

; The memory contents are left shifted by 5

; Bits.

LACC *, 0, AR3 ; load Accum. With the contents of the memory

; Location pointed to by the current AR after

; The memory contents are left shifted by 5

; Bits. Now you have the option of choosing

; A new AR. In this case, AR3 will become the

; New AR.

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2 without also including

x1.

23 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

It is optional when using indirect addressing to modify the data. Once you supply a left

shift value from 0…15 (even a shift of 0), then you have the option of changing to a new current

auxiliary register (AR).

The # sign is prefix that signifies that the number used is a constant as opposed to

memory location.

Example:

RPT #15 ; this syntax is using short immediate addressing. It will repeat the next

instruction 15+1 times.

LACC #60h ; this will load the accumulator with the

; Constant 60h

LACC 60h ; However, this instruction will load the

; Accumulator with the contents in the data

; Memory location 60h, not the constant #60h

We will now provide a few examples of using the instruction set. Example 2.1 performs a few

arithmetic functions with the DSP core and illustrates the nature of assembly programming.

Programming with the assembly instruction set is somewhat different than languages such as C.

In a high-level language, to add two numbers we might just code “c = a + b”. In assembly, the

user must be sure to code everything that needs to happen in order for a task to be executed. Take

the following example:

Example 2.1 - Add the two numbers “2” and “3”:

LDP #6h ; loads the proper DP for dma 300h

SPLK #2, 300h ; store the number “2” in memory address 300h

LACL #3 ; load the accumulator with the number “3”

ADD 300h ; adds contents of 300h (“2”) to the contents

; of the accumulator (“3”); accumulator = 5

Another way:

LDP #6h ; loads the proper DP for dma 300h

SPLK #2h, 300h ; store the number “2h” in memory address

; 300h

SPLK #3h, 301h ; stores the number “3h” into memory address

; 301h

24 M.Kaliamoorthy, Associate Professor,EEE,PSNACET,Dindigul

LACL 300h ; load the accumulator with the contents in

; Memory location 300h

ADD 301h ; adds contents of memory address 301h (“3h”)

; To the contents of the accumulator (“2h”)

;accumulator = 5h

Looping algorithms are very common in all programming languages. In high-level languages, the

“For” and “While” loops can be used. However, in assembly, we need a slightly different

approach to perform a repeating algorithm. The following example is an algorithm that stores the

value “1” to memory locations 300h, 301h, 302h, 303h, and 304h.

Example 2.2- Looping Algorithm Using the Auxiliary Register

LAR AR0, #4 ; load auxiliary register 0 with #4

LAR AR1, #300h ; this AR will be used as a memory pointer

LACL #1h ; loads “1” into the accumulator

LOOPER MAR *, AR1 ; makes AR1 the next current AR

SACL *+, AR0 ; writes contents of accumulator to address

; pointed to by AR1, the “+” increments AR1

; By 1, next current AR is AR0

BANZ LOOPER ; branch to LOOPER while current AR is not 0;

decrements current AR by 1 and branches

; back to LOOPER

One might wonder if assembly language is so tedious to use, why not just program in a high-

level language all the time. When code written in a high level language is compiled into

assembly, the length of the code increases substantially. For example, if an assembly program

takes up 50 lines, the same program written in C might take 150 lines after it is compiled. For

this reason, code written in assembly almost always executed faster and uses less memory than

high-level language code.

