A New Single Phase PV fed Five Level Inverter Topology connected to the Grid

OCTOBER 08, 2010

Presentation By

Mr. M.Kaliamoorthy,
Assistant Professor
Department of Electrical and Electronics Engineering
PSNA College of Engineering and Technology
Dindigul, Tamilnadu-624622
Tel: 9865065166
E-Mail: kaliasgoldmedal@gmail.com,kalias_ifet@yahoo.com
Website:www.kaliasgoldmedal.yolasite.com
Paper Number : 370

Objectives of This Paper

To design a new Multilevel Inverter Topology for Photovoltaic Applications with minimum number of Switches

To Design a Control algorithm for New Topology with minimum carrier signals
To suggest a Novel Carrier for Multilevel inverters
To compare the novel carrier with Conventional Triangular Carrier (Comparison based on Ma and Mf with THD)

PHOTOVOLTAIC CELL WORKING PRINCIPLE

The Photovoltaic Cell

Source: U.S. Department of Energy.

Sunlight irradiation causes electrons to separate irom their atoms.

Electron hole \& electrons begin to move toward the P.N junction

When the Electron hole \& electron come together at the P -N junction, voltage is generated. When lead wires are connected, electricity is generated.

PHOTOVOLTAIC CELL MODELING

From the figure

$$
T=T_{L}-T_{D}---(1)
$$

Where I=Output Current In Amps
$I_{1}=$ light Current Or Photo Generated Current In Amps
$I_{D}=$ Diode Current in amps

Workship the creator not his creation- Edmond Becquerel ,1889 Electricity From Sun

PHOTOVOLTAIC CELL MODELING Cont...

By Shockley equation, current diverted through diode is

$$
I_{D}=I_{o}\left[\exp \left(\frac{U+I R_{s}}{n k T / q}\right)-1\right]
$$

Where $I_{0}=$ Reverse Saturation Current
$\mathrm{n}=$ Diode Ideality Factor
K=Boltzmann's Constant
T= Absolute Temperature
q= Elementary Charge
For silicon of $25^{\circ} \mathrm{C} n k T / q=0.0259$ volts $=\alpha$

$$
I_{D}=I_{o}\left[\exp \left(\frac{U+I R_{s}}{\alpha}\right)-1\right]
$$

PHOTOVOLTAIC CELL MODELING Cont...

Substituting above equation in equation (1) we get

$$
I=I_{L}-I_{o}\left[\exp \left(\frac{U+I R_{s}}{\alpha}\right)-1\right]----(2)
$$

Where $\alpha=n k T / q$ is known as Thermal Voltage Timing Completion Factor

The four Parameters I_{L}, I_{0}, R_{s} and α need to be determined to Study the I-U characteristics of PV cells

PHOTOVOLTAIC CELL MODELING Cont...

LIGHT CURRENT IL determination

$$
I_{L}=\frac{\phi}{\phi_{r e f}}\left[I_{L, r e f}+\mu_{I, S C}\left(T_{c}-T_{c, r e f}\right)\right]
$$

Where $\phi=$ irradiance $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
$\phi_{\text {ref }}=$ reference irradiance $\left(1000 \mathrm{~W} / \mathrm{m}^{2}\right.$ is used in this study)
$\mathrm{I}_{\mathrm{L}, \text { ref }}=$ Light current at reference condition $\left(1000 \mathrm{~W} / \mathrm{m}^{2}\right.$ and $25^{\circ} \mathrm{c}$)
$\mathrm{T}_{\mathrm{c}}=\mathrm{PV}$ cell temperature
$\mathrm{T}_{\mathrm{c}, \text { ref }}=$ Reference Temperature ($25^{\circ} \mathrm{C}$ is used here)
$\mu_{I, S C}=$ Temperature coefficient of the short circuit current (A/ ${ }^{0} C$)
Both $\mathrm{I}_{\mathrm{L}, \text { ref }}$ and $\mu_{\mathrm{I}, \mathrm{SC}}$ can be obtained from manufacturer data sheet

PHOTOVOLTAIC CELL MODELING Cont...

SATURATION CURRENT I_{0} determination

$$
I_{o}=I_{o, \text { ref }}\left(\frac{T_{c, \text { ref }}+273}{T_{c}+273}\right)^{3} \exp \left[\frac{e_{g a p} N_{s}}{q \alpha_{r e f}}\left(1-\frac{T_{c, \text { ref }}+273}{T_{c}+273}\right)\right]
$$

Where $\mathrm{I}_{\mathrm{o}, \text { ref }}=$ Saturation current at the reference condition (A)
$\mathrm{e}_{\text {gap }}=$ Band gap of the material (1.17eV for Si materials)
$\mathrm{N}_{\mathrm{s}} \quad=$ Number of cells in series of the PV module
$\mathrm{q}=$ Charge of the electron $\left(1.60217733 \times 10^{-19} \mathrm{C}\right)$
$\alpha_{\text {ref }}=$ The value of α at the reference condition

$$
I_{o, \text { ref }}=I_{L, \text { ref }} \exp \left(-\frac{\mathrm{U}_{o c, \text { ref }}}{\alpha_{\mathrm{ref}}}\right)
$$

$U_{o c, r e f}=$ The open circuit voltage of the PV module at the reference condition(V) (Will be provided by manufacturers)

PHOTOVOLTAIC CELL MODELING Cont...

Calculation of α

$$
\alpha_{r e f}=\frac{2 U_{m p, \text { ref }}-U_{o c, \text { ref }}}{\frac{I_{s c, \text { ref }}}{I_{s c, \text { ref }}-I_{m p, \text { ref }}}+\ln \left(1-\frac{I_{m p, \text { ref }}}{I_{s c, \text { ref }}}\right)}
$$

Where
$U_{m p, \text { ref }}=$ Maximum power point voltage at the reference condition (V)
$\mathrm{I}_{\mathrm{mp,ref}}=$ Maximum power point current at the reference condition (A)
$\mathrm{I}_{\mathrm{sc}, \text { ref }}=$ Short circuit current at the reference condition (A)
α is a function of temperature, which is expressed as

$$
\alpha=\frac{T_{\mathrm{c}}+273}{T_{c, \text { ref }}+273} \alpha_{r e f}
$$

PHOTOVOLTAIC CELL MODELING Cont...

Calculation of Series Resistance R_{s}

Some manufactures provide value of R_{s}, if they do not provide It can be calculated as follows

$$
R_{s}=\frac{\alpha_{r e f} \ln \left(1-\frac{I_{m p, r e f}}{I_{s c, r e f}}\right)+U_{o c, r e f}-U_{m p, r e f}}{I_{m p, r e f}}
$$

R_{s} is taken as constant here
Thermal Model of Photovoltaic cell
$C_{p v} \frac{d T_{c}}{d t}=k_{i n, p v} \phi-\frac{U \mathrm{x} \mathrm{I}}{\mathrm{A}}-K_{\text {loss }}\left(T_{c}-T_{a}\right)$
$C_{p v}=$ The oveall heat capacity per unit area of the PV cell/Modul e $\left[\mathrm{J} /\left({ }^{0}{ }^{c} \cdot m^{2}\right)\right]$
$K_{\text {in,pv }}=$ Transmitta nce absorbtion product of PV cells
$\mathrm{k}_{\text {loss }}=$ Overall heat loss coefficien $\mathrm{t}\left[\mathrm{W} /\left({ }^{0}\right.\right.$ c.m $\left.\left.{ }^{2}\right)\right]$
$T_{a} \quad=$ Ambient te mperature $\left({ }^{0} c\right)$
$A=$ Effective area of the PVcell/ Module(m ${ }^{2}$)

PHOTOVOLTAIC CELL MODEL PARAMETERS

$I_{\mathrm{L}, \text { ref }}\left(I_{\mathrm{SC} \text {,ref }}\right)$	2.664 A
$\alpha_{\text {ref }}$	5.472 V
R_{s}	1.324Ω
$\mathrm{U}_{\text {oc,ref }}$	87.72 V
$\mathrm{U}_{\mathrm{mp}, \text { ref }}$	70.731 V
$I_{\mathrm{mp}, \text { ref }}$	2.448 A
$\Phi_{\text {ref }}$	$1000 \mathrm{~W} / \mathrm{m}^{2}$
$\mathrm{~T}_{\mathrm{c}, \text { ref }}$	$25^{\circ} \mathrm{C}$

C_{PV}	$5 \times 10^{4} \mathrm{~J} /\left({ }^{0} \mathrm{c} . \mathrm{m}^{2}\right)$
A	$1.5 \mathrm{~m}^{2}$
$\mathrm{~K}_{\text {in,pv }}$	0.9
$\mathrm{~K}_{\text {loss }}$	$30 \mathrm{~W} /\left({ }^{0} \mathrm{c} . \mathrm{m}^{2}\right)$

Be willing to accept temporary inconvenience for permanent improvement -Dynamo-Michael Faraday-1832

PHOTOVOLTAIC CELL MODEL IN MATLAB/SIMULINK

Better safe than sorry -Analog Storage Oscilloscope- Hughes-1957
2010 IEEE International Conference on Communication Control and Computing Technologies

CHARACTERISTICS OF PV CELL AT CONSTANT CELL TEMPERATURE

[^0]
CHARACTERISTICS OF PV CELL AT CONSTANT IRRADIANCE

Everyone wants to go to heaven but nobody wants to die - Megger - Evershed - 1905
2010 IEEE International Conference on Communication Control and Computing Technologies

New PV fed Multilevel Inverter

Operation of Five Level Inverter with Auxiliary Switch

Fish and guests smell after three days - Digital Multimeter -Fluke Electronics- 1969

Operation of Five Level Inverter with Auxiliary Switch

S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	$V_{i m v}$
ON	OFF	OFF	OFF	ON	$+V_{p /} / 2$
OFF	ON	OFF	OFF	ON	$+V_{p v}$
	OFF	OFF	ON	ON	
OFF	or or or	or $($ ON	or $($ OFF $)$	OFF $)$	
ON	OFF	OFF	ON	OFF	$-V_{p v} / 2$
OFF	OFF	ON	ON	OFF	$-V_{p v}$

History repeats itself - Electrolytic capacitor- Julius Edgar-1928

Comparison of Different Carrier Waves

IEEE

One can never consent to creep when one feels an impulse to soar - Electromagnetism -Maxwell-1865

New Five Level Inverter with Auxiliary SwitchA dual Reference Modulation Technique

IEEE

Don't sit like a rock work like a clock- Fluorescent Lamp -Edmund Germer - 1926

PWM Strategy and Operating Principle

Modulation index Ma for five-level PWM inverter is given as

$$
M_{a}=\frac{A_{m}}{2 A_{c}}
$$

Where $A c$ is the peak-to-peak value of carrier and Am is the peak value of voltage reference $\mathrm{V}_{\text {ref. }}$ Since in this work two reference signals identical to each other are used, above equation can be expressed in terms of amplitude of carrier signal V_{c} by replacing A_{c} with V_{c} and $A_{m}=V_{\text {ref1 }}=\mathrm{V}_{\text {ref2 }}=\mathrm{V}_{\text {ref }}$

$$
M=\frac{V_{r e f}}{2 V_{c}}
$$

PWM Strategy and Operating Principle

Switches S2-S4 will be switching at the rate of the carrier signal frequency, while S5 and S6 will operate at a frequency equivalent to the fundamental frequency.

CLOSED LOOP CONTROL SYSTEM

A man is as old as he feels - Hybrid Vehicle -Ferdinand Porsche-1899

Maximum Power Point Algorithm

Be willing to accept temporary inconvenience for permanent improvement- Logic gates-Charles Babbage -1837

SIMULATION RESULTS

Dual Reference and Carrier Comparison

Believing in yourself is the first step to success- Neon Lamp -Georges Claude-1910

SIMULATION RESULTS

Switching Signals to S2 and S3

IEEE

Switching Signals to S4 and S5

Discretion is the better part of valor -Piezoelectricity-Pierre Curie-1880

Switching Signals to S6

Lightning never strikes twice in the same place -Relay-Joseph Henry-1835

SIMULATION RESULTS

IEEE

OUTPUT VOLTAGE WITH M ,D < 0.5

INVETER CURRENT WITH M ,D < 0.5

SIMULATION RESULTS

IEEE

OUTPUT VOLTAGE AND ITS FUNDAMENTAL WITH M ,D > 1.0

INVETER CURRENT WITH M , D > 1.0

Never judge a book by its cover - Radio Guglielmo-1901

SIMULATION RESULTS

IEEE

OUTPUT VOLTAGE AND ITS FUNDAMENTAL WITH 0.5 <M,D > 1.0

INVETER CURRENT WITH M , D > 1.0

SIMULATION RESULTS

IEEE

Available signals
Structure:
1
1
input 1
Signal number:
1
-FFT window
Start time (s 0.24
Number of 8
Fundamental frequency
50
-FFT settings
Display style:
Bar (relative to fund...

Frequency axis:
Hertz
Max Frequency (Hz):
1000
Display

Harmonic Spectrum of Voltage With $0.5<M, D>1.0$ Harmonic Spectrum of Current With $0.5<M, D>1.0$ With out filters

Without filters

No one can make you feel inferior without your consent -Regenerative Circuit-Edwin Armstrong-1914

CONCLUSION

This paper presented a single-phase five-level inverter with a dual reference modulation technique for PV application. The dual reference modulation technique involves comparing two reference signals identical to each other except for an offset equivalent to its carrier signal, with a rectified inverted sine carrier signal to generate PWM switching signals for the switches. The circuit topology, control algorithm and operational principle of the proposed inverter were analyzed in detail. The results show that the THD of the five-level inverter is much less than that of the conventional three-level inverter. Furthermore, both the grid voltage and the grid current are in phase at near unity power factor.
 Success is a journey, Which has no Destination

[^0]: Distance lends enchantment to the view -CRO- Karl Ferdinand Braun- 1897

