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      Abstract-This paper presents modeling, controller design, and 
simulation study of a grid connected Photovoltaic (GCPV) 
distributed generation (DG) system. The overall configuration of the 
grid connected photovoltaic DG system is given, dynamic models for 
the GCPV power plant and its power electronic interfacing are  
described, and controller design methodologies for the control of 
power flow from the photovoltaic cell power plant to the utility grid 
are presented. A MATLAB/Simulink based simulation model is 
developed for the GCPV DG system by combining the individual 
component models and the controllers design. Simulation results are 
presented to show the overall system performance. 
 

Keywords--Control, distributed generation (DG), interfacing, 
modeling, Grid connected photovoltaic (GCPV) 
 

I. INTRODUCTION 
 

     The Ever-Increasing energy consumption and the rising 
public awareness for  environmental protection have created 
increased interest in green (i.e., renewable and photovoltaic 
based) power generation systems. Moreover, due to steady 
progress in power deregulation and utility restructuring and 
because of tight constraints are imposed on the construction of 
new transmission lines for long-distance power transmission, 
interest in distributed generation (DG) systems installed near 
load centers is increasing. 
    Photovoltaic cells are static energy conversion devices that 
convert the solar energy directly into electrical energy. They 
show great promise to be an important DG source of the future 
due to their many advantages, such as high efficiency, zero or 
low emission (of pollutant gases), and flexible modular 
structure. Grid connected PV systems have become one of the 
important applications of solar energy. Grid-connected PV 
plants  makes good  economic  sense  to  maximize  the  amount  
of power generated by PV arrays and thus transferred to the grid 
at all times. An important technique for achieving the above is 
called the maximum power point tracking (MPPT). In principle, 
this controls the output of a PV system to match with the grid  
for  all  atmospheric conditions. Hence, it results in the system 
operating at the maximum power point at all times.  
    This paper presents the modeling and control of a GCPV 
system. The Photovoltaic cell power plant is interfaced with the 
utility grid via boost dc/dc converters and a three-phase pulse 
width modulated (PWM) inverter. A validated GCPV dynamic 
model, reported in [1], is used in this paper. The models for the 
boost dc/dc converter and the three-phase inverter together with 

an LC filter transmission lines are also addressed. The controller 
design methodologies for the dc/dc converters and the three-
phase inverter are also presented for the proposed GCPV DG 
system. A neural network based MPPT algorithm is proposed in 
this paper. Based on the individual component models developed 
and the controllers designed, a simulation model of the GVPV 
DG system has been built in MATLAB/Simulink. 
 

II.SYSTEM DESCRIPTION 
 

To meet the system operational requirements, a photovoltaic DG 
system needs to be interfaced through a set of power electronic 
devices. The interface is very important as it affects the 
operation of   the PV cell system as well as the power grid. 
Pulse-width modulated voltage source inverters(VSI) is used to 
interconnect a PV system to a utility grid. In addition, PV 
systems normally need boost dc/dc converters to track the 
maximum  output voltage, smooth PV output current to make the 
PV cell operate at maximum efficiency [1]. 
    Fig.1 shows the schematic block diagram of a grid connected 
photovoltaic system proposed in this paper. For maximum 
utilization efficiency of a PV cell it is necessary to operate the 
cell at maximum power point. But it is difficult to operate the 
cell at MPP always as it depends on the atmospheric conditions 
such as cell temperature and irradiance. Various methods to 
realize MPPT have been reported in the literature. In this paper a 
neural network based MPPT is proposed. 
 
 
 
 
 
 
 
 
 

Fig.1.Block diagram of a grid connected photovoltaic system 
 

A three-phase six switch inverter interfaces dc-dc boost 
converter with an a.c grid. A neural network based high 
performance current regulator, combining with a space vector 
modulation PWM scheme has been used to control the inverter. 
Discussions of the method and simulation results are presented 
in the paper. 
 



III. DYNAMIC MODELS FOR PV CELL AND POWER 
ELECTRONIC DEVICES 

 

This section describes the dynamic models for the main 
components of the system shown in Fig.1, namely for the PV 
array, Neural Network for MPPT, DC/DC converter and the 
Three-phase inverter. 
 

A. Dynamic Model for the Photovoltaic Cell 
 

As is well known a PV array consists of a collection of solar 
cells connected in series and/or parallel. Each of these cells is 
basically a p-n diode that  convert the light energy into electrical 
energy. The most commonly used model for PV-cell is one 
diode equivalent circuit is shown in Fig.2. Since the shunt 
resistance RSh  is large, it is normally neglected. This simplified 
circuit is used in this paper for modeling of a PV-cell [1]-[4]. 

 

 

 

 

Fig (2). One-diode equivalent circuit models for a PV cell. 
(a)Five parameters model (b)Simplified four parameters model. 

 

The non-linear of Vpv-Ipv and P-Vpv curves are correspondingly 
drawn as shown below: 
 

 

 
 

Fig.2. Vpv-Ipv and P-Vpv characteristics of a PV cell 
 

From figure (2.b) the relation between the output Vpv and the 
output current Ipv can be expressed as: 

I I I  
 

I I I exp
V I R
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Where  IL = Light current; Io =  Saturation current;  Rs= Series 
Resistance; α = Thermal voltage timing   completion factor. 
The above four parameters are need to be determined to obtain 
the I-V characteristics of PV-module. Thus, this model can be 
termed as Four-parameter model. The equations for determining 
the four parameters are given below: 

 

1. Light Current (IL)  
 

                   I I µ T T … 2   
 
Where G=solar irradiance (W/m2); Gref = reference irradiance 
(1000W/ m2 is used in this study); ILref=light current at the 
reference condition; TC= PV cell temperature (°C); TCref = 

reference cell temperature (25°C is used in this study); µIsc = 
temperature coefficient of the short-circuit current (A/°C). From 
the above equation for light current it can be observed that IL is 
a function of both temperature and irradiance. 
 

2. Saturation Current (IO) 

1 … 3   

Where Ioref = saturation current at the reference condition (A); 
egap = band gap of the material 1.17 eV for Si materials); Ns = 
number of cells in series of a PV module; q = charge of an 
electron (1.60217733×10-19 C); αref = the value of α at  reference 
condition. 
Ioref can be calculated as: 

                                 … 4   
 

Where Vocref = the open circuit voltage of the PV module at 
reference condition (V). 
 

3. Calculation of α  
                                        … 5   
 

The value of αref  can be calculated as: 
 

                               … 6   

 

Where Vmpref = maximum power point voltage at the reference 
condition (V);   Impref = maximum power point current at the 
reference condition (A); Iscref = short circuit current at the 
reference condition (A).  From the above equation for α, it can be 
observed that α is a function temperature. 
 

4. Series Resistance (RS) 
Some manufacturers provide the value of Rs. If not provided, 
the following equation can be used to estimate its value:  

                             … 7   

RS  is taken as a constant in the model of this study. 
 

5. Thermal Model of PV 
From equations (1) to (6), it can be noted that the temperature 
plays an important role in the PV performance. Therefore, it is 
necessary to have  a  thermal  model  for  a  PV  cell/module.  In  
this  study,  a  lumped  thermal  model  is developed for the PV 
module. The temperature of the PV module varies with 
surrounding temperature, irradiance, and its output current and 
voltage, and can be written as: 

                … 8   

CPV = the overall heat capacity per unit area of the PV cell/ 
module[J/(C-m2)];Kinpv = Transmittance-absorption product of 
PV cells ; Kloss = overall heat loss coefficient [W/(˚C-m2)]; 
Ta=ambient temperature (˚C); A = effective area of the PV 
cell/module (m2). 
 



B. Maximum Power Point Tracking of PV Cell Using  
NEURAL NETWORKS 

 

The block diagram for identifying the optimal operating  point 
using neural networks is shown in fig(4).  
 
 

Fig.4 Block Diagram for the identification of optimal operating 
point 

 

The configuration of 3-layer feed-forward neural network is 
shown in fig (5). The network has 3 layers with 3 neurons in 
input, 4 neurons in  hidden, and 1neuron in output layers [8].  
 

 

 

 

Fig.5. Configuration of a Neural Network 
 

    The neuron in the input layer gets  input solar irradiance (G) 
and cell temperature (Tc). These signals are directly passed to 
the neurons in the hidden layer. The neuron in the output layer 
provides the identified maximum Imp. For each neuron in the 
hidden and the output layer, the output Oi(k) is given as follows: 
 

                                          … 9   

    The term Ii(k) is the input signal given to the neuron  I at the 
Kth sampling. The input Ii (k) is given by the weighted sum 
from the previous nodes as follows: 
                                 ∑ … 10   
 

    In the above equation, Wij is the connection weight from the 
neuron j to the neuron i and Oj (k) is the output from neuron 
j.The process of determining connection weights is referred to as 
training process[9]-[11]. In the training process, we need a set of 
input-output patterns for the neural network. The computations 
are performed off-line during the training process. With the 
training patterns, the connection weights Wij recursively until the 
best fit is achieved for the input-output patterns in the training 
data. A commonly used approach is the generalized delta rule, 
where the sum of the squared error described below is 
minimized during the training process. 

                             ∑ … 11   
Where N is the total number of training patterns. T(k) is the 
target output from the output node and O(k) is the computed 
one. For all the training patterns, the error  function E is 
evaluated, and the connection weights are updated to minimize 
the error function E. 
 

C. State Space Model of Boost dc/dc Converter 

Solar cells have relatively low conversion efficiency and the 
improvement of overall system efficiency is an important factor 

in the area of PV systems. This can be partly achieved by using 
high efficiency intermediate converters. In this paper, a boost 
converter coupled with PV array is presented [6]-[7]. 
 

 

 
Fig.6 .Circuit Diagram for Boost Converter 

 

The output current Ipv and the terminal voltage Vpv are measured 
at a instant and compared with Imp of the neural network where 
Imp is optimal operating point which yields maximum power 
from PV module. This error is processed through the PI-
controller which generates a control signal to shift the operating 
point Ipv and Vpv to the optimal operating point. 
    A state space averaging technique is used to develop linear 
state space models for dc-dc boost converter. The average state 
space model for the boost dc/dc converter can then be obtained 
as follows: 

                               … 12   
                                     X… 13  

Where    ,  
0

 ,   
0

  0 1  

Where D = Duty ratio of the switch 
 

C. State Space Model of Three-Phase Inverter   

A three-phase six-switch PWM VSI is used to convert the power 
available at the dc bus to ac power. Fig.7 shows the main circuit 
of the three-phase voltage source inverter connected to the utility 
grid through the LC filter (Lf and Cf) and the coupling inductor 
(Ls). Rf and Rs in the figure are the parasitic resistances of the 
filter inductor and the coupling inductor, respectively.  
 

 

 

 

 
Fig 7: Three phase DC/AC voltage source inverter 

 
Using the classic electrical circuit theory and state-space 
averaging technique, a detailed state-space description of the 
inverter can be obtained [23]-[24]. 
 

 

IV. CONTROLLER DESIGNS FOR POWER ELECTRONIC DEVICES 
 

In this section, conventional PI controller is used for the boost 
dc/dc converters. Also, a dq transformed two-loop current 
control scheme is presented for the space vector pulse width 
modulation based inverter to control power delivered from the 
PV cell power system to the grid. 
 



A. Controller Design for the Boost dc/dc Converter 
 

The main components of the dc/dc converter can be determined 
by the prescribed technical specifications, such as the rated and 
peak voltage and current, input current ripple, and output voltage 
ripple, etc., using the classic boost dc/dc converter design 
procedure [12]-[14]. The component values for the  dc/dc 
converter used in this paper are listed in Table I. Based on the 
converter model in fig.(6), a PI current controller (kdp + kdi/s) 
can be designed using the classic Bode-plot and root-locus 
method [15].  

TABLE I 
PARAMETERS OF THE BOOST dc/dc CONVERTER 

 
Current Ripple(∆IL) .266A 

Voltage Ripple(∆Vc) .17777V 
Inductance(L) 2mH 

Capacitance(C) 150µF 
Resistance 

(equivalent load) 
50Ω 

 
B. Controller Design for the Three-Phase VSI 
 

To meet the requirements for interconnecting a PV cell system 
to a utility grid and control power flow between them, it is 
necessary to shape and control the inverter output voltage in 
amplitude, angle, and frequency [17]-[19]. In this section, a 
space vector PWM controller is designed for the inverter to 
satisfy voltage regulation as well as to track maximum power. 
The component values for the three phase inverter used in this 
paper are listed as filter inductance and capacitance are Lf 
=800µH and Cf =400µF, coupling inductance=2mH.The 
parasitic resistances of the filter inductor and the coupling 
inductor Rf and RS are each 5Ω. 
    The dq transformation transfers a stationary (abc) system to a 
rotating (dq0) system. The transformation decreases the number 
of control variables from 3 to 2 (component 0 will be zero) if the 
system is balanced. Moreover, the dq signals can be used to 
achieve zero tracking error control [24]. Due to these merits, dq 
transformation has been widely used in PWM converter/inverter 
control and is also applied for the inverter control in this paper 
as shown in fig. (8). 

    For accurate current regulation, all AC three phase variables 
are represented in their d-q vector forms using a reference frame 
synchronously rotating with the supply voltage. Two PI 
regulators one for d component the other q component of the 
current vector are required. The advantage of employing a 
synchronously rotating reference frame (SRRF) current regulator 
is well known. The input and the output are DC rather than 
sinusoidal quantities, hence, enabling the controller to obtain a 
complete elimination of phase error between the reference and 
controlled currents at any operating point The q component of 
the command current vector is set to zero, while d is defined to 
be equal to maximum current output of the neural network. 
 

             … 14   
               … 15   
 

Where Kpc and Kic are the current proportional and integration 
gains. 
 
 
 
 
 
 
 
 

Fig. 8. Block diagram of the overall control system of the 
inverter   

To generate the above calculated voltage vector at the AC side 
of the inverter, a space vector modulation technique is applied to 
determine the inverter switching states and their corresponding 
on-times. In this technique the phase angle of the reference 
voltage vector,  can be calculated directly using  and . 
Hence the vector's projection in the d-q plane may lie in the area 
of one of the six sectors [20,21]. Each sector is edged by two 
inverter voltage vectors. For a short sampling time interval Ts , 

 can be regarded as a constant vector Thus, if it is within the 
area edged by vectors N and N + 1, we can express that as: 
 

… 16  
 

Where  and    are the on-times for vectors    and  
respectively. To is for vectors Vo and T7 for V7. To calculate  
and the modulation index, M is defined as: 
                                         √

√
| |

 僀
… 17   

 

                   Where | |  〱 … 18  
 

Subsequently the formulae for the four switching vector on-
times are given as: 
 

                              60 … 19   
 

                                … 20   
 

                             … 21   
Where γ represents the phase angle of and TS is the sampling 
time. When applying the four switching vectors to control the 
inverter switches,the switching sequence is defined as 
VO VN VN+1 V7. The fundamental component of the 
inverter output voltage, thus obtained should closely resemble 
the reference voltage vector . 
 

V. SIMULATION RESULTS 
 

Based on the mathematical equations discussed before, a 
dynamic model for a PV module consisting of 153 cells in series 
has been developed using MATLAB/Simulink. The input 
quantities (solar irradiance G and the ambient temperature Ta) 
together with manufacturer data are used to calculate the four 
parameters. Then, based on equation (1), the output voltage is 
obtained numerically. The thermal model is used to estimate the 
PV cell temperature. The two output quantities (PV output 
voltage Vpv and the PV  cell temperature Tc), and the load current 
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