Tutorial -II

Chopper Fed DC drives

Problem -1

Given Data:

V_s=120 volts, R_a=0.5 ohms, L_a=20mH, K=0.05 V/RPM. I_a=20A

Constant Load, Separately excited DC motor

Find

- ✓ The range of Speed Control
- \checkmark The range of duty cycle

Assume Continuous current mode

<u>Solution</u>

(i) Range of Duty cycle

Average output voltage of the motor

$$V_{a} = E_{b} + I_{a}R_{a}$$

$$\alpha V_{s} = E_{b} + I_{a}R_{a} \qquad \begin{bmatrix} \because \mathbf{V}_{a} = \alpha V_{s} \\ E_{b} = KN \end{bmatrix}$$

$$\alpha V_{s} = KN + I_{a}R_{a}$$

As motor drives a constant load, T is constant and I_a is 20A and minimum possible speed is **<u>ZERO</u>**

$$\alpha x 120 = (0.05)x0 + (20x0.05)$$
$$120\alpha = 10$$
$$\alpha = \frac{10}{120} = 0.08$$

Maximum possible speed corresponds to $\alpha = 1$, i.e. when 120 volts is directly applied to the motor. Therefore the range of duty cycle is

 $0.08 \le \alpha \le 1$

(ii) The range of Speed

 $\alpha V_s = KN + I_a R_a$ Minimum speed N=0

Maximum speed at $\alpha = 1$

1x120 = 0.05xN + (20x0.5)120 = 0.05N + 10 $N = \frac{120 - 10}{0.05} = 2200rpm$

The range of speed control is $0 \le N \le 2200RPM$

Problem-6

Given Data:

V_s=220 volts, R_a=0.2 ohms, L_a=20mH, K=0.08 V/RPM. I_a=25A

Constant Load, Separately excited DC motor

Find

- ✓ The range of Speed Control
- \checkmark The range of duty cycle

Assume Continuous current mode

Solution

(i) Range of Duty cycle

Average output voltage of the motor

$$V_{a} = E_{b} + I_{a}R_{a}$$

$$\alpha V_{s} = E_{b} + I_{a}R_{a} \qquad \begin{bmatrix} \because \mathbf{V}_{a} = \alpha V_{s} \\ E_{b} = KN \end{bmatrix}$$

$$\alpha V_{s} = KN + I_{a}R_{a}$$

As motor drives a constant load, T is constant and I_a is 25A and minimum possible speed is **ZERO**

$$\alpha x 220 = (0.08)x0 + (25x0.2)$$
$$220\alpha = 10$$
$$\alpha = \frac{10}{220} = 0.04$$

Maximum possible speed corresponds to $\alpha = 1$, i.e. when 120 volts is directly applied to the motor. Therefore the range of duty cycle is

$$0.04 \le \alpha \le 1$$

(ii) The range of Speed

 $\alpha V_s = KN + I_a R_a$

Minimum speed N=0

Maximum speed at $\alpha = 1$

$$1x220 = 0.08xN + (25x0.2)$$
$$220 = 0.08N + 5$$
$$N = \frac{220 - 5}{0.08} = 2687.5rpm$$

The range of speed control is $0 \le N \le 2687.5RPM$

Problem -2

Given Data

 V_s =230 volts, N=960 rpm, I_a=200 amps, R_a=0.02 ohms separately excited DC motor, chopper drive for both motoring and braking operation, Assume continuous conduction

Find

(i) α = ? at rated Torque and Speed =350rpm.

(ii) If $\alpha = 0.95$ and current is twice rated calculate speed

Solution

(i) At rated operation

$$E_1 = V_a - I_a R_a$$

$$\Rightarrow 230 - (200x0.02) = 226 volts$$

E at 350 rpm (ie) E₂ = ?

From rated condition

$$E_1 = K\omega_1$$

$$220 = Kx\omega_1$$

$$\omega_1 = \frac{960x2\pi}{60} = 100.53rad / \sec$$

$$\therefore K = \frac{226}{100.53} = 2.24Volts.\sec/rad$$

 E_2 at 350 rpm is given by

$$\omega_2 = \frac{350x2\pi}{60} = 36.651$$

:. $E_2 = 36.65x2.24 = 82.1Volts$

Motor terminal voltage at 350 rpm is

$$V_{350rpm} = 82.1 + (200x0.02) = 86.1Volts$$
$$\alpha = \frac{V_{350rpm}}{V_{960rpm}} = \frac{86.1}{230} = 0.37$$

(ii) Maximum available

$$V_a = \alpha V_s$$

= 0.95x230 = 218.5 Volts
∴ E = V_a + I_a R_a = 218.5 + (200x0.02) = 222.5Volts

Speed at 222.5 volts E_b is

$$E_{b} = K\omega$$

$$\omega = \frac{222.5}{2.24} = 99.330 rad / sec$$

$$N = \frac{99.330 x60}{2\pi} = 948.53 rpm$$

Problem -5

Given Data

 V_s =230 volts, N=1100 rpm, I_a=220 amps, R_a=0.02 ohms separately excited DC motor, chopper drive for both motoring and braking operation, Assume continuous conduction

Find

(i) $\alpha = ?$ at rated Torque and Speed =400rpm.

(ii) If $\alpha = 0.9$ and current is twice rated calculate speed

Solution

(i) At rated operation

$$E_1 = V_a - I_a R_a$$

$$\Rightarrow 230 - (220x0.02) = 225.6volts$$

E at 400 rpm (ie) E₂ = ?

From rated condition

$$E_{1} = K\omega_{1}$$

$$\omega_{1} = \frac{1110x2\pi}{60} = 115.192rad / sec$$

$$\therefore K = \frac{225.6}{115.192} = 1.95Volts.sec/rad$$

 E_2 at 400 rpm is given by

$$\omega_2 = \frac{400x2\pi}{60} = 41.887 rad / sec$$

$$\therefore E_2 = 41.887 x 1.95 = 81.68 Volts$$

Motor terminal voltage at 400 rpm is

$$V_{400rpm} = 81.68 + (220x0.02) = 86.1Volts$$
$$\alpha = \frac{V_{400rpm}}{V_{1100rpm}} = \frac{86.1}{230} = 0.37$$

(ii) Maximum available

$$V_a = \alpha V_s$$

= 0.9x230 = 207 Volts

$$\therefore E = V_a + I_a R_a = 207 + (2x220x0.02) = 215.8Volts$$

Speed at 222.5 volts E_b is

$$E_{b} = K\omega$$

$$\omega = \frac{215.8}{1.95} = 110.667 rad / sec$$

$$N = \frac{110.667 x60}{2\pi} = 1056.78 rpm$$

Problem-4

Given Data

V_s=600 volts, I_a=300 amps, R_a=0.04 ohms, R_f=0.06 ohms, K=4x10⁻³ Nm / amp² $\delta = 0.6$

DC SERIES motor.

Solution

a. Power input to the motor = $P = V_a I_a$

$$V_a = \delta V_s = 0.6x600 = 360Volts$$

$$\therefore P = 360x300 = 108KW$$

b. For a DC series motor

$$E_a = K_a \phi \omega_m$$

= KI_a ω_m [:: $\phi = I_a$]
= 4x10⁻³x300x ω_m
:: $V_a = E + I_a (R_a + R_s) = KI_a \omega_m + I_a (R_a + R_s)$
 $\Rightarrow 0.6x600 = 4x10^{-3}x300x\omega_m + 300(0.04 + 0.06)$
 $\omega_m = \frac{360 - 30}{1.2} = 27.5rad / sec(or)2626rpm$
Motor Torque T = Ka ϕ I_a = KI_a²
= 4x10⁻³x300²
= 360 N - M