Tutorial -II
Chopper Fed DC drives

Problem -1

Given Data:

$\mathrm{V}_{\mathrm{s}}=120$ volts, $\mathrm{R}_{\mathrm{a}}=0.5$ ohms, $\mathrm{L}_{\mathrm{a}}=20 \mathrm{mH}, \mathrm{K}=0.05 \mathrm{~V} /$ RPM. $\mathrm{I}_{\mathrm{a}}=20 \mathrm{~A}$
Constant Load, Separately excited DC motor
Find

$$
\begin{array}{ll}
\checkmark & \text { The range of Speed Control } \\
\checkmark & \text { The range of duty cycle }
\end{array}
$$

Assume Continuous current mode

Solution

(i) Range of Duty cycle

Average output voltage of the motor

$$
\begin{aligned}
& V_{a}=E_{b}+I_{a} R_{a} \\
& \alpha V_{s}=E_{b}+I_{a} R_{a} \\
& \alpha V_{s}=K N+I_{a} R_{a}
\end{aligned}
$$

As motor drives a constant load, T is constant and I_{a} is 20A and minimum possible speed is ZERO

$$
\begin{aligned}
& \alpha x 120=(0.05) x 0+(20 x 0.05) \\
& 120 \alpha=10 \\
& \alpha=\frac{10}{120}=0.08
\end{aligned}
$$

Maximum possible speed corresponds to $\alpha=1$, i.e. when 120 volts is directly applied to the motor. Therefore the range of duty cycle is

$$
0.08 \leq \alpha \leq 1
$$

(ii) The range of Speed
$\alpha V_{s}=K N+I_{a} R_{a}$
Minimum speed $\mathrm{N}=0$
Maximum speed at $\alpha=1$

$$
\begin{aligned}
& 1 x 120=0.05 x N+(20 x 0.5) \\
& 120=0.05 N+10 \\
& N=\frac{120-10}{0.05}=2200 \mathrm{rpm}
\end{aligned}
$$

The range of speed control is $0 \leq N \leq 2200 R P M$

Problem-6

Given Data:

$\mathrm{V}_{\mathrm{s}}=220$ volts, $\mathrm{R}_{\mathrm{a}}=0.2$ ohms, $\mathrm{L}_{\mathrm{a}}=20 \mathrm{mH}, \mathrm{K}=0.08 \mathrm{~V} / \mathrm{RPM} . \mathrm{I}_{\mathrm{a}}=25 \mathrm{~A}$
Constant Load, Separately excited DC motor
Find

$$
\begin{array}{ll}
\checkmark & \text { The range of Speed Control } \\
\checkmark & \text { The range of duty cycle }
\end{array}
$$

Assume Continuous current mode

Solution

(i) Range of Duty cycle

Average output voltage of the motor

$$
\begin{aligned}
& V_{a}=E_{b}+I_{a} R_{a} \\
& \alpha V_{s}=E_{b}+I_{a} R_{a} \quad\left[\begin{array}{l}
\because \mathrm{V}_{\mathrm{a}}=\alpha V_{s} \\
E_{b}=K N
\end{array}\right] \\
& \alpha V_{s}=K N+I_{a} R_{a}
\end{aligned}
$$

As motor drives a constant load, T is constant and I_{a} is 25 A and minimum possible speed is ZERO

$$
\begin{aligned}
& \alpha \times 220=(0.08) x 0+(25 x 0.2) \\
& 220 \alpha=10 \\
& \alpha=\frac{10}{220}=0.04
\end{aligned}
$$

Maximum possible speed corresponds to $\alpha=1$, i.e. when 120 volts is directly applied to the motor. Therefore the range of duty cycle is

$$
0.04 \leq \alpha \leq 1
$$

(ii) The range of Speed

$$
\alpha V_{s}=K N+I_{a} R_{a}
$$

Minimum speed $\mathrm{N}=0$
Maximum speed at $\alpha=1$

$$
\begin{aligned}
& 1 \times 220=0.08 x N+(25 x 0.2) \\
& 220=0.08 N+5 \\
& N=\frac{220-5}{0.08}=2687.5 \mathrm{rpm}
\end{aligned}
$$

The range of speed control is $0 \leq N \leq 2687.5 R P M$

Problem -2

Given Data

$\mathrm{V}_{\mathrm{s}}=230$ volts, $\mathrm{N}=960 \mathrm{rpm}, \mathrm{I}_{\mathrm{a}}=200 \mathrm{amps}, \mathrm{R}_{\mathrm{a}}=0.02$ ohms separately excited DC motor, chopper drive for both motoring and braking operation, Assume continuous conduction

Find
(i) $\alpha=$? at rated Torque and Speed $=350 \mathrm{rpm}$.
(ii) If $\alpha=0.95$ and current is twice rated calculate speed

Solution

(i) At rated operation

$$
\begin{aligned}
& E_{1}=V_{a}-I_{a} R_{a} \\
& \Rightarrow 230-(200 x 0.02)=226 \text { volts } \\
& E \text { at } 350 \mathrm{rpm}(\mathrm{ie}) \mathrm{E}_{2}=?
\end{aligned}
$$

From rated condition

$$
\begin{aligned}
& E_{1}=K \omega_{1} \\
& 220=K x \omega_{1} \\
& \omega_{1}=\frac{960 \times 2 \pi}{60}=100.53 \mathrm{rad} / \mathrm{sec} \\
& \therefore K=\frac{226}{100.53}=2.24 \mathrm{Volts} . \mathrm{sec} / \mathrm{rad}
\end{aligned}
$$

E_{2} at 350 rpm is given by

$$
\begin{aligned}
& \omega_{2}=\frac{350 \times 2 \pi}{60}=36.651 \\
& \therefore E_{2}=36.65 \times 2.24=82.1 \mathrm{Volts}
\end{aligned}
$$

Motor terminal voltage at 350 rpm is

$$
\begin{aligned}
& V_{350 \mathrm{rpm}}=82.1+(200 \times 0.02)=86.1 \text { Volts } \\
& \alpha=\frac{V_{350 \mathrm{rpm}}}{V_{960 \mathrm{rpm}}}=\frac{86.1}{230}=0.37
\end{aligned}
$$

(ii) Maximum available

$$
\begin{aligned}
V_{a} & =\alpha V_{s} \\
& =0.95 \times 230=218.5 \text { Volts }
\end{aligned}
$$

$$
\therefore E=V_{a}+I_{a} R_{a}=218.5+(200 x 0.02)=222.5 \text { Volts }
$$

Speed at 222.5 volts E_{b} is

$$
\begin{aligned}
& E_{b}=K \omega \\
& \omega=\frac{222.5}{2.24}=99.330 \mathrm{rad} / \mathrm{sec} \\
& N=\frac{99.330 \times 60}{2 \pi}=948.53 \mathrm{rpm}
\end{aligned}
$$

Problem -5

Given Data

$\mathrm{V}_{\mathrm{s}}=230$ volts, $\mathrm{N}=1100 \mathrm{rpm}, \mathrm{I}_{\mathrm{a}}=220 \mathrm{amps}, \mathrm{R}_{\mathrm{a}}=0.02$ ohms separately excited DC motor, chopper drive for both motoring and braking operation, Assume continuous conduction

Find
(i) $\alpha=$? at rated Torque and Speed $=400 \mathrm{rpm}$.
(ii) If $\alpha=0.9$ and current is twice rated calculate speed

Solution

(i) At rated operation

$$
\begin{aligned}
& E_{1}=V_{a}-I_{a} R_{a} \\
& \Rightarrow 230-(220 x 0.02)=225.6 \text { volts } \\
& E \text { at } 400 \mathrm{rpm}(\mathrm{ie}) \mathrm{E}_{2}=?
\end{aligned}
$$

From rated condition

$$
\begin{aligned}
& E_{1}=K \omega_{1} \\
& \omega_{1}=\frac{1110 \times 2 \pi}{60}=115.192 \mathrm{rad} / \mathrm{sec} \\
& \therefore K=\frac{225.6}{115.192}=1.95 \mathrm{Volts} . \mathrm{sec} / \mathrm{rad}
\end{aligned}
$$

E_{2} at 400 rpm is given by

$$
\begin{aligned}
& \omega_{2}=\frac{400 \times 2 \pi}{60}=41.887 \mathrm{rad} / \mathrm{sec} \\
& \therefore E_{2}=41.887 \times 1.95=81.68 \mathrm{Volts}
\end{aligned}
$$

Motor terminal voltage at 400 rpm is

$$
\begin{aligned}
& V_{400 \mathrm{rpm}}=81.68+(220 x 0.02)=86.1 \text { Volts } \\
& \alpha=\frac{V_{400 \mathrm{rpm}}}{V_{1100 \mathrm{rpm}}}=\frac{86.1}{230}=0.37
\end{aligned}
$$

(ii) Maximum available

$$
\begin{aligned}
V_{a} & =\alpha V_{s} \\
& =0.9 \times 230=207 \text { Volts }
\end{aligned}
$$

$\therefore E=V_{a}+I_{a} R_{a}=207+(2 \times 220 \times 0.02)=215.8$ Volts
Speed at 222.5 volts E_{b} is

$$
\begin{aligned}
& E_{b}=K \omega \\
& \omega=\frac{215.8}{1.95}=110.667 \mathrm{rad} / \mathrm{sec} \\
& N=\frac{110.667 \times 60}{2 \pi}=1056.78 \mathrm{rpm}
\end{aligned}
$$

Problem-4

Given Data

$\mathrm{V}_{\mathrm{s}}=600$ volts, $\mathrm{I}_{\mathrm{a}}=300$ amps, $\mathrm{R}_{\mathrm{a}}=0.04$ ohms, $\mathrm{R}_{\mathrm{f}}=0.06$ ohms, $\mathrm{K}=4 \times 10^{-3} \mathrm{Nm} / \mathrm{amp}^{2} \delta=0.6$ DC SERIES motor.

Solution

a. Power input to the motor $=\mathrm{P}=V_{a} I_{a}$

$$
\begin{aligned}
& V_{a}=\delta V_{s}=0.6 \times 600=360 \text { Volts } \\
& \therefore P=360 \times 300=108 \mathrm{KW}
\end{aligned}
$$

b. For a DC series motor

$$
\begin{aligned}
E_{a} & =K_{a} \phi \omega_{m} \\
& =\mathrm{KI}_{\mathrm{a}} \omega_{m}\left[\because \phi=I_{a}\right] \\
& =4 x 10^{-3} x 300 x \omega_{m} \\
\therefore V_{a} & =E+I_{a}\left(R_{a}+R_{s}\right)=K I_{a} \omega_{m}+I_{a}\left(R_{a}+R_{s}\right) \\
\Rightarrow & 0.6 x 600=4 x 10^{-3} x 300 x \omega_{m}+300(0.04+0.06) \\
\omega_{m} & =\frac{360-30}{1.2}=27.5 \mathrm{rad} / \sec (\text { or }) 2626 \mathrm{rpm}
\end{aligned}
$$

$$
\text { Motor } \text { Torque } \mathrm{T}=\mathrm{Ka} \phi \mathrm{I}_{\mathrm{a}}=K I_{a}{ }^{2}
$$

$$
=4 \times 10^{-3} \times 300^{2}
$$

$$
=360 \mathrm{~N}-\mathrm{M}
$$

